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ABSTRACT 

This thesis describes the analysis and design of a precision voltage reference (PVR) based 
upon a micromechanical resonator. The precision voltage reference consists of two closed loop 
controllers and a nonlinear resonator. The oscillator loop maintains oscillations in the resonator. 
The phase locked loop is a frequency control loop that locks the resonator frequency to an external 
frequency. 

The micromechanical device consists of a pair of resonators that are electrostatically driven 
and sensed in their out-of-plane vibrational resonance mode. The oscillating proof masses move on 
flexure beams and the resonator is configured for use as a voltage controlled oscillator within the 
phase locked loop. The first order stiffness coefficient has an electrostatic component that reduces 
the frequency of oscillation with increasing bias voltage applied to the resonator. The resonator's 
frequency sensitivity to voltage is realized by the first order, bias voltage dependent stiffness 
coefficient. The input bias voltage to the voltage controlled oscillator is the precision voltage 
reference. 

A prototype PVR device was constructed and the PVR operation confirmed. Results 
between a first order design analysis, advanced modeling, and the prototype are in good agreement. 
The error model indicates the baseline design for the micromechanical PVR achieves a total voltage 
stability below 0.4 parts per million (ppm) with temperature control of 0.1 °C. 
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C ha pter   1 

INTRODUCTION 

1. Objective 

The objective of this research is to design, fabricate, and test a Precision Voltage Reference 

device. The precision voltage is based on the frequency standard of a micromachined resonator. 

The PVR consists of two closed loop controllers which interface to the plant or micromechanical 

resonator. The first is a simple oscillator loop, similar to a relay controller, designed to maintain 

oscillations in the resonator. The second is a phase locked loop (PLL), or frequency control loop, 

which locks the resonator frequency to a external oscillator. In this loop, the resonator functions as 

a voltage controlled oscillator (VCO) which signifies that the output frequency is a function of the 

input bias voltage. The PVR works on the principle that the frequency of the micromechanical 

resonator is highly stable for various external parameter variations. Given the stability of the 

oscillator frequency, the bias voltage will also be very stable. This bias voltage is the precision 

voltage reference that is the objective of this thesis. 

1.1 Microelectromechanical Devices 

The resonant plant for the PVR is a micromechanical gyroscope configured to operate as a 

pair of parallel plate oscillators. The field of microelectromechanics (MEMs) is growing at an 

enormous rate. A study performed by Systems Planning Corporation projects that the market for 

MEMs devices will expand to $14 billion dollars by the year 2000 from an estimated $700 million 

in 1990 [13]. 

Micromechanics is fascinating in part because of the small size achieved in the processing 

laboratory. Although MEMs does not usually require dimensions as small as those used in 

integrated circuit processing, it does utilize similar technology. In fact, the two technologies share 
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many interesting similarities and the development of micromechanical technology parallels some of 

the developments in silicon processing. 

The primary stimulus for the explosion of silicon processing and the integrated circuit was 

the reduction in cost associated with the transistor. When the technology first emerged, the size 

reductions made the technology interesting; however, the cost reductions allowed the technology to 

proliferate. Integrated circuit processing allows batch fabrication where thousands of units are 

made at a time with no need for individual assembly. Consider that the cost of building a single 

transistor or a 100 million transistors on a single wafer is the same [13]. The economies of scale 

achieved in batch processing drove the price per transistor to nearly zero as the size of the 

individual transistor decreased. 

The same advantages that exist in the integrated circuit field apply to MEMs: small size, 

enormous reductions in cost per device, numerous devices on a single chip with similar 

performance characteristics, and processing technology that is readily available. Additionally, 

MEMs offers a number of other unique advantages. The ability to integrate the processing 

technology for integrated circuits with MEMs processing results in even more cost reductions. A 

single packaged device would contain the micrornachined sensor (transducer) and the electronics 

needed to process the sensor's signals. A single package reduces noise, parasitics, and failure often 

associated with the bond pads currently used to interface with the sensor [13]. Finally, elimination 

of several packages is attractive because the cost of the package is often a significant fraction of the 

total cost. Micromechanics clearly offers a unique combination of small size and weight with high 

performance. 

The micromechanical device used in the plant of the PVR is a pair of resonators. At the 

simplest level, the resonator is a typical high quality factor, second order system. The use of a 

micromechanical device as a resonator is only one of the diverse applications that already exist for 

micromechanical devices. Among the many other applications are inertial systems, digital displays, 

automobile safety systems such as airbag deployment, ink jet heads, biomedical instrumentation, 
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chemical analysis, and micro-optics.  As the market expands, new applications of the technology 

will certainly develop. 

Historically, the Charles Stark Draper Laboratory contributed to the field of guidance, 

navigation, and control systems. The Draper micromechanical sensors group has had success in 

building a tuning fork gyroscope (TFG) and a silicon oscillating accelerometer (SOA). The use of 

the Draper/Boeing tuning fork gyroscope provides a unique opportunity for quick realization of the 

PVR. This thesis configures the TFG in order to incorporate it as the PVR resonator. This thesis 

will also suggest enhancements to the mechanical design that will optimize performance of the 

PVR. A new mechanical design and fabrication of the PVR-specific resonator is not accomplished 

here. 

1.2 Fabrication of the Draper/Boeing Tuning Fork Gyroscope 

The Draper/Boeing TFG structure is shown in the SEM photo in Figure 1.1. The basic 

structure consists of two proof masses attached to the glass substrate with a folded beam geometry. 

The outer and inner comb structures are fixed. The TFG also has electrodes under the proof 

masses. The structures are labeled in Figure 1.2. Draper uses an innovative dissolved wafer 

process to fabricate its micromechanical instruments with silicon parts on a glass substrate. The 

dissolved wafer process is a simple, high yield process that uses only three masking steps. 
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Figure 1.1. SEM of Draper/Boeing Tuning Fork Gyroscope 

First, recesses are formed in the silicon to define the gap between the proof mass and the 

bottom electrode and create the anchors to the glass substrate. This is accomplished by patterning 

an oxide using conventional photolithography, etching in KOH, and stripping the oxide. Next, the 

silicon is boron doped to define the proof mass thickness. After the doping, the comb patterns are 

defined using a photolithography pattern definition and reactive-ion-etching. This completes the 

silicon process. The glass process begins with the third and final mask for the recess and metal 

deposition pattern. The wafers are then anodically bonded together. Finally, EDP etching 

dissolves the undoped silicon structure. 

1.3 Motivation for the Micromechanical PVR 

Draper Laboratories is well known for the design of precise inertial navigation systems 

(INS). The lack of a suitable radiation-hard PVR for accelerometer references affected the design 

of these inertial navigation systems. The creation of a suitable PVR will dramatically alter the 

accelerometer and system design. Major size and cost reductions will result from such a change. 

At Draper Laboratories, advances in micromechanical technology resulted in the development of 

the micromechanical TFG and SOA introduced above. As many of the costly, complex, and bulky 
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accelerometers and gyroscopes are converted to MEMs technology, a PVR built with this 

technology will allow simple integration. 

The proposed PVR utilizes a micromachined silicon-based tuning fork along with the 

appropriate closed loop electronics. This configuration offers a unique advantages over 

semiconductor PVRs: semiconductor PVRs are available with the desired thermal stability; 

however, they are not radiation-hard. A PVR based on a mechanical resonator should satisfy this 

requirement. The effect of radiation on silicon mechanical parts is not part of this thesis. Current 

semiconductor PVRs that require special doping profiles do not promise the low cost and size of a 

micromechanical PVR. 

Finally, the use of a micromechanical silicon tuning fork provides some unique advantages 

over the traditional quartz tuning forks used in watches, clocks, and computers. The 

micromechanical resonator achieves a magnitude of 0.5 ppm/°C frequency sensitivity to thermal 

variations by building the silicon tuning forks on a glass substrate with the dissolved wafer process 

and proper flexure design. Another advantage of silicon tuning forks is the abundance of 

companies working with silicon. Finally, the different etching processes for quartz and silicon 

cause the silicon tuning forks to be smaller (0.3-2 mm) than the quartz (3-5 mm) which allows the 

silicon to be less expensive. All of the advantages for the micromechanical resonator-based PVR 

promise to make it an important building block for other micromechanical systems. 

1.4 The Precision Voltage Reference 

Draper Laboratories manufactures thermally insensitive resonators with micromachined 

silicon on a glass substrate. The Draper/Boeing tuning fork gyroscope is shown in Figure 1.2 (side 

view) and in Figure 1.3 (top view). The gyroscope is electrostatically driven along the X-axis 

(drive axis) while the input angular rate, shown in Figure 1.2, is sensed from the resulting coriolis 

force along the Y-axis (sense axis). In the tuning fork mode, the two proof masses move out of 

phase in both the X and Y axes providing an increased scale factor and reducing common mode 

16 



errors.  A pair of micromechanical resonators exists on both the sense and the drive axes of the 

TFG. 

The PVR uses a single pair of resonators and can be developed using either the sense or the 

drive axis of the TFG. In the proposed PVR, the sense axis is integrated into a system that creates 

an inexpensive, interrupt-resistant, precision voltage reference. The PVR utilizes only the Y-axis 

and the positive direction in y is defined to be upwards in Figure 1.2. The outer drive combs are 

not used in this extension of the TFG and set to ground potential in order to minimize coupling 

from the Y-axis to the X-axis. Similarly, the inner comb is placed at ground. The only structures 

used in the PVR are the vertical parallel plate capacitors formed with the proof mass and the bottom 

set of electrodes and are outlined with boxes in Figure 1.2. 

Outer comb 
Proof 
mass 

T T 

Force 

electrode 

y * 

Inner combs 

r 

Proof 
mass 

iawKtU v-^—/^ 
Substrate    ^^^^^^^^B 

/i <§> 
n  input rate 

Sense 
electrode 

Outer comb 

Figure 1.2. End View of Draper/Boeing Tuning Fork Gyroscope 

For the PVR, the Y-axis oscillation is excited by electrostatically driving the proof masses 

out of phase. The forcing and sensing functions are based on the voltages applied to the stationary 

electrodes and capacitor changes as the proof masses move normal to the bottom electrodes. 
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Figure 1.3. Top view of Draper/Boeing Tuning Fork Gyroscope 

When a bias voltage is applied to the force and sense electrodes, the force on the proof mass 

results in a negative spring term proportional to the bias voltage squared. The effect of the bias 

voltage on the average resonant frequency is shown in Figure 1.4. The average resonant frequency 

of both proof masses are equal. However, the proof masses are moving out of phase and the 

resonant frequency of each will deviate slightly from the average frequency. These deviations in 

frequency are out of phase with respect to one another. The deviations are kept small, on the order 

of le-10, in this application by exciting small amplitude oscillations. The resonant frequency of the 

resonator decreases as the bias voltage is increased until the electrostatic spring overcomes the 

mechanical spring and the proof mass snaps down to the bottom electrode. Since the spring term is 

proportional to the squared voltage, the graph is symmetric around the Y-axis. 

The resonator is used as a voltage controlled oscillator where the frequency of the output is 

dependent on the input bias voltage. The electrostatic characteristic in Figure 1.4 illustrates the 

highly nonlinear electrostatic characteristic of this micromechanical VCO. The bias voltage on the 

plates is the PVR voltage and is labeled appropriately in Figure 1.4. 
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Figure 1.4. Electrostatic Response 

Operation at a high bias voltage offers several advantages for the PVR. Most importantly, 

this increases the resonator voltage stability by reducing the voltage sensitivity to changes in the 

oscillation frequency. As seen in Figure 1.4, a deviation in resonant frequency results in a smaller 

change in PVR voltage on the right side of the electrostatic characteristic. The frequency changes 

resulting from instabilities in external parameters, such as temperature, will have a minimal effect 

on the voltage stability at high bias voltages. Unfortunately, a high bias voltage means that the 

possibility of snapdown is increased. Typical operating voltages for the PVR will be around 15 V. 

A simplified block diagram of the PVR is shown in Figure 1.5. The outer loop is the phase 

locked loop which adjusts the bias voltage until the frequency of the resonator and reference 

frequency are locked. As mentioned, the VCO is the micromechanical resonator. The bias voltage 

is applied to the sense electrode, shown in Figure 1.2, which alters the eigenfrequency of the 

resonator.  The proof masses are read differentially because they are moving out of phase.  The 
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changing capacitance and the bias voltage result in an output voltage that is proportional to the 

position of the proof masses. The frequency of this signal is locked to a reference and the control 

voltage at the output of this loop is the precision voltage reference that is applied as the bias voltage 

to the sense electrode. 

Reference 
Frequency 

TFG Y Axis 
Dynamics 

Oscillator 
Loop 

Electrode Voltage 
Generation 

T 

"-►Li hase 
etector 

Phase Locked 
Loop 

Figure 1.5. Simplified Block Diagram of PVR 

The inner loop, or oscillation loop, generates the periodic part of the drive voltage using the 

output of the VCO. This periodic signal is referred to as the probe voltage. The smaller force 

electrodes have a voltage that consists of a bias voltage identical to the bias voltage of the sense 

electrode plus the probe voltage at the eigenfrequency of the resonator. The oscillator loop 

maintains oscillations in the resonator. 

1.5 Overview of Thesis 

In the following chapters, the fundamental theory of micromechanical resonators is 

presented for a single resonator and expanded for the differential pair used in the PVR. The model 

for the loop dynamics is presented in state space form and the stability of the oscillator loop is 

examined. The closed loop model simulations are presented and compared with the first order 
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design calculations. Next, the system requirements are examined and an error model is presented. 

Finally, the hardware is analyzed with the test results of the PVR device. 

1.5.1 Micromechanical Resonator Model 

In chapter 2, the fundamental micromechanical resonator model is developed. The two 

most important concepts for microelectromechanical resonators are mass-spring-damper second 

order systems, and capacitor electrostatics [8]. The mechanical model of the resonator is presented 

and the nonlinear effects are examined because of the significant role in the closed loop behavior 

and frequency stability of the resonator. 

The fundamental electrostatic relationships for the resonator are developed. The forcing 

and sensing models are also presented with a brief preview of the loop electronics used in the 

sensing model. 

1.5.2 Closed Loop Models 

In chapter 3, the block diagram is presented and examined in depth. The closed loop 

models for the oscillator loop and the phase locked loop are developed. The transfer functions of 

the loop components are presented along with the state space models used for the numerical 

simulations. 

The closed loop stability of the oscillator loop is also examined after linearization of the 

oscillator loop model. The self excitation (oscillator) loop is linearized using describing functions 

for the sinusoidal response of a hard limiter and cubic which permits writing a linearized state space 

model of the resonator. The linearized state space model is used to demonstrate the stability 

criterion for the oscillation loop which is based entirely on the cubic spring and indicates instability 

for soft springs above a threshold value. 

1.5.3 Baseline Design and Simulation Results 

In chapter 4, the first-order design study is presented along with two distinct designs. The 

baseline design is an optimized design based on changes to the mechanical design of the resonator. 
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The prototype design incorporates the TFG vertical axis resonator. The simulations of the 

oscillator loop and phase locked loop, which utilize the state space models developed in the 

previous chapter, are presented. The phase locked loop simulations provide insight into the 

acquisition and locking behavior of the PLL with a nonlinear VCO. The oscillator loop is used to 

examine the start-up transient of the resonator. The simulation is also extended to confirm the 

theoretical oscillator loop stability criterion and quantify the effects of perturbations in the device 

parameters presented in chapter 5. 

1.5.4 System Requirement and Error Model 

In chapter 5, the implications of the PVR model are examined in detail. The frequency 

stability, in parts per million (ppm), of the resonator for the desired voltage stability of 0.4 ppm is 

presented. Following this, the frequency stability of the resonator is examined with regard to 

perturbations in the amplitude of oscillation, temperature, package pressure, probe voltages, contact 

potential, feedthrough and radiation. The prototype design is unable to meet the voltage stability 

requirement of 0.4 ppm without an automatic gain control loop (AGC) while the optimal design 

satisfies the stability requirement without an AGC. 

1.5.5 Hardware and Test Results 

In chapter 6, the full two proof mass block diagram is presented. The PLL is simplified and 

linearized to perform a classical control system design. This design is used to determine 

component level parameter values. The complete PVR component level schematic is presented and 

limitations in the prototype are examined. Additionally, the test results on the fully functioning 

prototype are presented. 

1.5.6 Conclusions and Future Work 

Finally, in chapter 7, conclusions for this thesis and recommendations for later work are 

given. The next major step would be the design and implementation of an amplitude control loop 

which would enhance performance of the PVR. Additionally, the simulation of a full PVR device, 
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including both control loops and the resonator dynamics, would be useful to examine the full start- 

up transient. 
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Chapter   2 

MICROMECHANICAL RESONATOR MODEL 

2. Overview 

The development of the micromechanical resonator model uses many disciplines: 

dynamics, electrostatics, electronics, fluid dynamics, and many other diverse fields. A 

micromechanical resonator's dynamics are typically those of a second order mass-spring-damper 

system. The damping is dependent on the pressure in the container of the enclosed device. The 

quality factor measured for the parallel plate resonator is consistently around 20,000. In 

micromechanical devices, capacitive sensors are typically used for detection and comb capacitors 

are used for forcing because they provide a position independent force. In this application, the 

capacitive sensor is used for both detection and forcing. The goal of this chapter is to develop a 

complete model of the resonator, describe how electrostatics are used for forcing and sensing, and 

explain many of the first order effects of the resonator using simplifications to the complete model. 

2.1 Electrostatic Forcing of Micromechanical Resonators 

Micromechanical resonators rely heavily on electrostatic forces generated across a 

capacitor. In this device, the force electrode is used for both forcing and sensing and the sense 

electrode is used exclusively for sensing the motion. Although using two plates provides some 

advantages, there are some important limitations when performing both these functions on the same 

axis. The single axis forcing and sensing couple these mechanisms and the voltages applied to the 

force plate will affect the sensed motion while the voltage applied to the sense plate will affect the 

forcing of the resonator. The drive resonators on Draper's TFG was designed to take advantage of 

the position independent forcing afforded by the comb capacitors and separate axis sensing with the 
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parallel plate capacitors. The single axis, dual parallel plate resonator extension for the PVR is the 

most important limitation in the design. 

Figure 1.2 shows the two parallel plate capacitors formed from the sense and force 

electrodes on the bottom and the proof mass on the top. Figure 1.3 shows the top view of the 

device. In this figure, the motion is perpendicular to the plane of the page. As stated previously, 

the outer and inner combs are set to ground and not used in this application. 

Before proceeding with the analysis of the actual forces on the proof masses, a brief review 

of some pertinent electrostatics will be presented. The potential energy between two conductors is 

given by, 

PE = ^CV2 (2.1.1) 

where, 

V = the voltage between the conductors, and 

C = the capacitance between the conductors. 

The force between the two conductors is the gradient of the potential energy. In this case, 

the voltages applied to the electrodes are independent of position. The proof mass is at a potential 

of zero. The electrostatic force on the proof mass (rotor) by the voltage applied to the stationary 

electrode (stator) is 

1  s3T* 

Fe=VPE = -—V2 (2.1.2) 

It is clear from this equation that the vertical force is proportional to the square of the voltage. This 

has some important implications for choosing the forcing voltage. Most importantly, the square of 

the voltage must have a component at the fundamental resonant frequency of the oscillator. 
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Additionally, the partial derivative of the capacitance will be dependent on the geometry of the 

capacitors. In this application, the parallel plate resonator creates a nonlinearity in the forcing 

function. 

2.1.1 Electrostatic Forcing of the Resonator 

The capacitance for two parallel plates with a stationary bottom electrode and dynamic 

proof mass on top is given by, 

Er, A 

c-rjfc (2-13) 

where, 

y = the fringing coefficient, 

A = the total plate area, 

Y0 = the nominal gap distance, and 

e0 = permittivity of free space, and 

y = the vertical displacement of the proof mass. 

The nominal gap distance is the distance separating the parallel plates with the bottom 

electrodes and is a function of the bias voltages applied to the bottom electrodes. In terms of strict 

definitions, the constant displacement from a DC force is contained in the y term; however, it is 

often useful to group this constant displacement with the Y0 term and make it a function of the DC 

voltage applied to the electrodes. The area of the plates, A, becomes important in this problem 

because the bottom electrode is divided into two separate plates. The outer plate, composing 90% 

of the electrode's total area is referred to the sense area, As. The inner plate which is 10% of the 

total area is referred to as the force plate, A,. These two electrodes are shown in Figure 1.2. 
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Finally the electrostatic force on the proof mass, due to the voltages applied to both the 

sense and force electrodes, is given by, 

I s0(AtV,2 + AVS
2) 

e   r2    (Y0+yy 
(2.1.4) 

where, 

V, = force electrode voltage, and 

Vs = sense plate voltage. 

The capacitance due to the force plate and the sense plate have been treated as if they were in 

parallel. The single fringing coefficient is used for the total capacitance. 

The forcing function is highly nonlinear with respect to position. In an ideal situation, the 

proof mass oscillation amplitude will be small compared to the nominal gap distance. A small 

amplitude model will be developed along with a large amplitude model in Equation 2.1.4 in order 

to accommodate both cases. The small amplitude model makes it simpler to examine many 

features of the oscillator and permits a linear state space representation of the resonator. 

The effects of the nonlinear forcing function are evident if the electrostatic force is 

expanded using a Taylor series approximation. If the oscillations are small, y/Y0 « 1 , and the 

electrostatic force becomes, 

Fe=-r 
e0(AtV,2 + ASVS

2) 

2K2 l-2^ + 3U    -U 
V 

+. (2.1.5) 

The electrostatic force now contains position dependent terms which can be written as 

electrical spring terms. There is also a position-independent force term. The electrical spring 

stiffness values and vertical force terms are given by, 
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_      KW+AM 3S0(A^+ASV;) 
Kye ~     7 yi Ky2e-lr) v4 (Z.l.Oj 

J0 z -Jo 

2e0 {Ay2 + AV2) ^ \e0 (A,V2 + AV2) 
k,» = -r        '5 Fy = -r,       '2 (2.1.7) 

This completes the modeling of the electrostatic force.   Equation 2.1.4 will be used for large 

amplitudes while Equation 2.1.5 will be used for small amplitude oscillations of the resonator. 

2.1.2 Electrode Voltages 

As stated earlier, the choice of the drive voltages is paramount to constructing an effective 

device. The primary limitation is single axis sensing and forcing. In order to force the oscillator, a 

periodic component is required, while sensing requires a constant voltage. In this case, the voltages 

applied to the sense and force plates are given by, 

Vu=Va+Vbcsq(cot) VU=VC 

V2l=-Va+Vbcsq(a>t) V2s=-Vc 
( " ' > 

where, 

csq(ot) = a square wave in phase with cosine at the frequency co, and 

Va = Vc = Vpvr the precision voltage reference or bias voltage, and 

Vb = the probe voltage. 

The notation for the bias voltages is used to provide a general model that allows separate 

definition of these voltages. The negative signs associated with the DC voltages result in forcing 

the two parallel plates out of phase. Additionally, they allow the position of both proof masses to 

be read differentially, increasing the scale factor at the output. The choice for the drive voltages 

here is dictated by simplicity and ease of implementation. It does not offer an elegant solution to 

feedthrough.  Feedthrough describes the current from the electrode to the proof mass caused by 
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high frequency voltage and a constant steady state capacitance.   The feedthrough signal is in 

quadrature to the sensed signal and results in errors in the position sensing. 

The biasing is accomplished in a number of ways. The sense bias voltage, Vc , can be 

applied to the sense plate and a signal from among the following can be applied to the much 

smaller force plate, force bias plus a drive voltage at the eigenfrequency, at half resonance, or at 

two dual frequencies. These last two options are designed specifically to eliminate the effects of 

feedthrough by placing the voltage off resonance and allowing the oscillator to attenuate the 

feedthrough term. The squared voltage still produces a force at the resonance of the oscillator. The 

half-frequency drive does offer some unique advantages such as higher drive voltages and 

elimination of the feedthrough. The first option, drive voltage at the eigenfrequency, is used in the 

PVR. The force bias is identical to the sense bias and is defined as the precision voltage reference. 

2.2 Lumped Parameter Model and Non-dimensionalization 

The basic dynamic model for a single element (single proof mass) micromechanical 

resonator with two degrees of freedom is a coupled pair of second-order, nonlinear, differential 

equations [8]. This includes one equation for each degree of freedom. The model for the PVR uses 

a single degree of freedom, corresponding to the Y axis, as shown in Figure 1.2. Furthermore, the 

PVR utilizes two coupled proof masses. The out-of-phase mode is the only mode excited of the 

two normal modes of the resonator system. In out-of-phase forcing the coupling stiffness drops out 

of the equations of motion. Therefore, the lumped model equations are written in terms of one 

proof mass. The full set of equations are only written where necessary for clarity. 

The equations for a single mass 1-D lumped parameter model can be derived using 

Lagrange's equations using a single generalized coordinate [8]. The following equation for the 

vertical displacement of a single proof mass results from writing the total potential energy of the 

system in terms of linear, quadratic, and cubic mechanical springs. 

my+ by y+ k^y + kylmy2 + kyimy3 = Fe (2.2.1) 

29 



where, 

m = mass of the proof mass, and 

by = the damping coefficient, and 

Fe = the electrostatic force on the proof mass 

ky,,, k^ ky3y= the linear, quadratic, and cubic mechanical stiffness 

The lumped parameter model produces three mechanical spring terms. The subscripts on 

the spring constants indicate that these are along the y axis, the order of the constant, and that each 

one is a mechanical spring term. As shown previously, the nonlinearity in the electrostatic forcing 

function, Fe, results in electrical spring terms with linear, quadratic, and cubic stiffness coefficients. 

The higher order mechanical spring terms are now discarded. The drive axis of the TFG 

has a position independent forcing function and contains no electrostatic spring terms. The testing 

results on this axis indicate that the quadratic and cubic electrical spring terms will dominate the 

higher order mechanical spring terms [17]. The linear mechanical spring term is maintained in the 

model. Equation 2.2.1 can be rewritten, 

my+ by y+ kymy = Fe (2.2.2) 

which is a classic mass-spring-damper system as shown in Figure 2.1. However, this model does 

possess the nonlinearity contained within the forcing function. 
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Proof Mass 

Electrode 

Figure 2.1. Typical Mass Spring Damper System 

The coupled model is presented in Figure 2.2 where the model only contains the elastic 

restoring forces. This model validates throwing out the coupling term for the out-of-phase mode. 

The equations of motion are written assuming that a finite mass m3 exists at the coupling point. 

This can be set to zero later. 

mi ^1=^1(^1 -^3) 

m2y2 =kym2{y2-y3) (2.2.2a) 

m3 yt = kymiy3 - k^(yi -y3)- kym2(y2 -y3) 

In a the symmetrical resonator, the first two stiffness terms are equal. The out-of-phase 

mode if described by the normal coordinate x,-x2. A single differential equation is obtained by 

subtracting the second equation from the first. 

mi[yi-y2) = kyn,{yi-yi) (2.2.2.b) 
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The coupling is eliminated if the common mode is not excited. The coupling stiffness term 

is discarded from the equations of motion and Equation 2.2.2 is used. 

V1 
Proof Mass 

Electrode 

Figure 2.2. Coupled Proof Mass Model 

The development of the small amplitude model is the simplest way to proceed. Equation 

2.1.5 is substituted in Equation 2.2.2 and Equation 2.1.6 is used to write the stiffness coefficients. 

This produces the following equation. 

™y+ by y+ kyy + kyley
2 + kyiey* = Fy (2.2.3) 

where, 

ky = kyn, + kye net linear stiffness, and 
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Fy = position-independent vertical force on the proof mass. 

Equation 2.2.3 is useful to obtain nondimensionalization coefficients. Nondimensionalizing 

the equations makes many of the following graphs easier to interpret and the equations universal to 

similar resonator systems. Finally, this makes the numerical analysis more accurate with step sizes 

and displacements close to unity. The nondimensional time and displacement is given by, 

r = eo„t = J—f (2.2.4) 
V m 

y={- (2.2.5) 
so 

where, 

o)n is the nominal natural frequency of the y-axis, and 

y0 is the nominal steady state oscillation amplitude. 

Both of these nominal terms are artificial constructs. They are first order, linear estimations of the 

values which provide an approximate order of magnitude for nondimensionalization of the full 

differential equations. 

Both of the approximations are considered accurate under most operating conditions. The 

linear stiffness in Equation 2.2.5 contains both the linear mechanical and electrical stiffness. The 

nominal oscillation frequency written in Equation 2.2.5 is only an approximation assuming small 

damping and no nonlinear spring terms. The quality factor of the vertical axis is exceptionally high 

making the damping very small and the first assumption valid. The nonlinearity imposed by the 

cubic electrical spring term, examined in section 2.3.2, is found to produce a small shift of the 

frequency of oscillation. 
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Substituting the nondimensional temporal and spatial relationships into Equation 2.2.3 and 

using Equation 2.1.7 for the electrostatic force, the following equation results after some 

rearranging. 

••    1 • 
y+ Q?+ y + ky2y

2 + ky3y
3 = Fy (2.2.6) 

where, 

**"   k, k"~   k, F'-k,yQ 
(2-17) 

This simplification to the nondimensionalized full model derived in Equation 2.2.3 provides the 

means to conveniently examine two important parallel plate resonator effects: snapdown and spring 

softening. 

Before these two topics are addressed, the large amplitude model is nondimensionalized. 

Substituting the nondimensional parameters into Equation 2.2.2, the following equation results. 

Z     1~    kym~ 1 (A,V,2 + AsVt
2)      1 /noo^ 

Q       ky 2 (Y0+y0y)     kyy0 

where, 

ma>„ 
Q = —T

2
- = Quality factor of the resonator . (2.2.9) 

b> 

Equation 2.2.8 describes the motion of a single proof mass under the electrostatic forces 

caused by the voltages on both the force and sense plates. It is used when the amplitude is large in 

comparison to the nominal gap distance. Equation 2.2.6 is used for small amplitude operation. 

Both equations are in the form of a general second order system; however, the electrostatic stiffness 
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coefficients have some interesting effects on the dynamics.  Two important effects are snapdown 

and spring softening associated with the cubic nonlinearity. 

2.2.1 Snapdown 

The linear electrostatic spring is given by, 

K = [*„" Y '3 1 (2-2.9) zo 

This spring term is the defining equation for the electrostatic characteristic shown in Figure 1.4 that 

illustrates the transfer characteristic for the VCO. The first order electrostatic spring term gives the 

sense axis some interesting dynamics. The average frequency of the resonator proof masses can be 

approximated by discarding the time dependent terms in Equation 2.2.9. The bias voltages for the 

force and sense plates are equal (Vpvr), and these terms dominate any time dependent component of 

the squared voltages in Equation 2.2.9. The linear stiffness becomes, 

Using typical parameters for the resonators, this analytical model is presented along with the 

experimental data in Figure 2.3. The experimental plot closely approximates the predicted 

behavior. Although the system resembles a simple quadratic as in Equation 2.2.10, the magnitude 

of Y0 decreases as the voltage is increased, causing the electrostatic characteristic to bend more 

sharply. 
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Figure 2.3. Theoretical and Measured Electrostatic Characteristic 

As the bias voltage is increased, the linear electrostatic spring will eventually overcome the 

mechanical one and the proof mass will snap down to contact the electrode. As the bias voltage is 

increased, the expansion in Equation 2.1.5 for the electrostatic force will not be valid. Therefore, 

the füll equation for the net stiffness is used. For the following estimates of the snapdown voltage, 

a steady state condition is assumed where the position of the proof mass is static. The net stiffness 

is then given by, 

= _f£>,    _rs0(AlV,1+AMVa
2) 

dy *" (Y0+y)3 (2.2.11) 

The snapdown voltage occurs when the electrostatic stiffness equals the mechanical stiffness or 

simply when the net stiffness approaches zero. Setting the net stiffness to zero produces the 

following estimate for the snapdown voltage. 
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kvm(Y0+y)3 

^--V^r- <"-12> 
As snapdown occurs, the net force will also approach zero. Equating the electrostatic force 

in Equation 2.1.5 and the force due to the linear mechanical stiffness, and substituting the 

expression for k^ from Equation 2.2.11 gives the necessary displacement for snapdown to occur at 

y = -J (2.2.13) 

This means that once the gap decreases by a third due to the DC forces , the proof mass will snap 

down to contact the bottom electrodes. Substituting this value into the estimate for the snapdown 

voltage. 

,2 

ys0A 

I kym ( o ^0 ) 

V«ap=i     J4 (2.2.14) 

The electrostatic characteristic can be extended to the snapdown voltage as shown in Figure 2.4. 

Typical values for the snapdown voltage are 17 V. 
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Figure 2.4. Snapdown Voltage in Electrostatic Response 

Operation of the resonator pair near the snapdown voltage poses a potential problem for the device. 

When the proof mass snaps down to contact the bottom electrode, it may stick and prevent further 

operation of the resonator. 

2.2.2 Electrostatic Spring Softening and the Duffing Equation 

The third order spring term also has some significant effects on the dynamics of the proof 

mass. It is useful to examine the full equation of motion in 2.2.6. In this analysis, it is assumed that 

the resonator is driven open loop and thus the forcing function is independent of the output. The 

equation is classified as a second order nonlinear, damped, forced differential equation. It is also 

nonstationary because the frequency of the forcing function is changing in time and in closed loop 

operation, the amplitude will also be initially changing in time. Finally, it is parametrically excited 
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because the stiffness coefficients are functions of time and the forcing function is multi-valued in 

frequency. A number of important simplifications will be made to assist in solving this equation. 

First, the second order spring term will be dropped completely. Ideally, the effects of the 

second order spring term from both proof masses are canceled due to the operation of the two plates 

out of phase and the differential position pick-off. The time dependence in the stiffness coefficients 

is small (le-10) so these terms will be considered time independent. Finally, the forcing function is 

considered single-valued; all subharmonic and superharmonic terms will produce a small output 

because of the exceptionally high Q of the device. The result of these simplifications is the classic 

Duffing Equation. 

The general Duffing equation can be solved using a variety perturbation methods. These 

methods lend themselves to the solutions of nonstationary systems when the amplitude and 

frequency are changing slowly in time [10]. Lindstedt's method is used here and produces identical 

results of the describing functions used in the linearized state space model [8,10]. 

The general nondimensionalized, damped, forced Duffing equation can be written, using 

Equation 2.2.6, 

y+Sy+y + Ay3 =K cos(cot) (2.2.15) 

where the vertical force in Equation 2.2.6 has been approximated with the time dependent part, 

using the forcing voltages given in Equation 2.1.5 and substituting these into the vertical force 

expression in Equation 2.1.7. The DC force causes a constant displacement absorbed in the 

nominal gap distance, Y0. The correspondence between the device parameters and the general 

Duffing equation can be written by comparing Equation 2.2.6 with Equation 2.2.15. 

X~k* 5-Q K-2      Yt       kya 
(2-2-16) 
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First, the parameters are defined as a function of e, so that as e goes to zero, the system 

reduces to an unforced, undamped, linear oscillator. This sets up the problem as a perturbation 

applied to a highly damped, weakly nonlinear equation with small input forces. 

y = y0 + €Vi 

CO = 6)0 + SCOx 

X = E\ (2.2.17) 
8= sS1 

K = £KX 

where co0=l according to the nondimensionalization and unfortunately the y0 is unrelated to the 

normalization factor introduced in 2.2.5 Substituting these expressions into Equation 2.2.16, 

defining T=co(s)t, and equating the s0 and s, coefficients, 

l'+y'-°     ..        . P.2..S) 
yi+yi= -M y0 ~siy0- ^yl + K\ cos(r) 

These two equations are solved sequentially. The solution to the first is given by, 

y0 = Acos(T-(ß) (2.2.19) 

Substituting this solution into the second equation and using several trigonometric identities, leads 

to the differential equation for X], 

^1 + ^1 = 
~    3    ~, 

-2a>xA-—X^A  +xr1cos($) cos(r-^) + 
(2.2.20) 

\SXA -xr, sin(^)jsin(r-0)-—XiA
i cos(3(r-^)) 

Now, the secular terms are eliminated by setting the terms in brackets to zero.  This insures the 

expansion is periodic.   The solutions to the resulting two equations produce the amplitude and 
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phase dependence in terms of frequency in Equation 2.2.19.   The frequency response equation for 

Duffing's equation is given by, 

8 M4A1     4 

and the phase characteristic can be written, 

a> = \--U2±l-~T-- (2.2.21) 

<j> = ±\m\-T=—) (2.2.22) 

where, 

A =A/Ap= the normalized amplitude 

The locus of points described by the frequency and phase equations represent the singular points for 

the system. 

The phase characteristic offers a convenient way to solve for the peak oscillation amplitude 

which can be used for the normalization factor in Equation 2.2.6. At resonance, the phase will be at 

-90° for a second order system and the normalized amplitude will equal unity.   The normalized 

amplitude is given by A=K/6. Solving for the real amplitude which corresponds to the 

normalization factor and putting the expression in terms of the y axis parameters, the peak 

amplitude of the displacement is given by, 

yeüAtVaVh  1 ma>n A'-gJT-bf- (2Z19) 
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For proper normalization, this is used throughout the simulations for y0. Analogous to the temporal 

normalization, this is an estimate derived from Lindstedt's technique. The phase and frequency 

response equations are plotted in Figures 2.4-2.7 for a variety of parameters listed in Table 2.1. 

In Figure 2.5 and Figure 2.6, the cubic spring term X is set to an arbitrary negative (spring 

softening) and positive (spring hardening) term demonstrating the effects of spring softening and 

hardening. The other parameters match the dynamic parameters of the resonator with Vpvr =15 V 

and Vb = 1 mV. The magnitude response of the soft spring bends to the left while that of the hard 

spring bends to the right. The response for a linear spring is also shown and matches the expected 

result for a general second order system. The low damping of the system is evident in the very 

narrow peak and large slope in the phase characteristic. 

In Figure 2.7 and Figure 2.8, the value of the cubic spring coefficient for resonators is 

substituted to demonstrate that the cubic spring term effects are small but indeed exist. The bias 

and drive voltages are Vpvr =15 V and Vb = 1 mV. All of the parameters used in Figures 2.4-2.7 

listed below in Table 2.1. 

Table 2.1. Non-dimensional Parameters for the Duffing Equation Simulation 

Linear Soft Hard Resonator 

'-^im   Bill 0 -0.01 0.01 -5.9e-4 

•■;.-.-:?_i.Wa«i.i:,'; 5.91e-5 5.91e-5 5.91e-5 5.91e-5 

..-,..;;. i -iiK»* vo/i •■&& 
-5.91e-5 -5.91e-5 -5.91e-5 -5.91e-5 
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The change in resonant frequency due to the cubic term is only 0.02% of the nominal value 

at the operating conditions simulated in Figure 2.7. This confirms the weak nonlinearity of the 

system assumed in the perturbation analysis. 

Magnitude Response of Soft,Linear, and Hard Springs 
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o 
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0.996 0.997       0.998        0.999 1 1.001        1.002        1.003        1.004 
Normalized Frequency (w/wn) 

Figure 2.5. Magnitude Response of Three Spring Types 
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Phase Response of Soft,Linear, and Hard Springs 
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Figure 2.6. Phase Response of Three Spring Types 

Magnitude Response of Soft and Linear Springs 
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Figure 2.7. Amplitude Response of Parallel Plate Resonator 
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Phase Response of Soft and Linear Springs 
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Figure 2.8. Phase Response of Parallel Plate Resonator 

When the oscillator is driven open loop, it will be driven at a specified input frequency. 

This frequency along with the initial conditions will determine the amplitude and phase of the 

oscillations. The stability of the steady state points(i.e. singular) can be determined with a phase 

plane plot. 

When the loop is closed, the forcing function becomes a signal proportional to the velocity 

of the proof mass. Similar to other self-excited systems, the oscillator will settle onto a limit cycle, 

assuming that it exists. This is examined in detail in the following chapter. Since the phase 

characteristic is monotonic, there can be only one position where the phase matches what is needed 

to close the loop. In this case, the device will be operating at 90°. 

2.3 Output Sensing 

In order to properly bridge the gap between the micromechanical motion of the oscillator 

and a block diagram description of the device, the sensing of the motion must be examined. The 
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sensing of motion in micromechanical devices is done in a similar way to the electrostatic forcing. 

In this respect, using the unique properties of the capacitor is fundamental to designing the detector. 

The proof mass motion is measured by connected both of the moving proof masses, to an 

integrator as shown in Figure 2.9, where the force and sense plates for each proof mass have been 

separated and depicted as capacitors in parallel. This setup is essentially a charge amplifier and the 

operation is best understood in the simplest form. In the ideal situation, a constant voltage is 

applied to the sense plate beneath the proof mass. The oscillations of the proof mass and the 

subsequent variable capacitance cause a sinusoidal varying charge to be injected into the 

operational amplifier input. This is finally integrated to produce a signal proportional to the proof 

mass position. 

The preamplifier is shown in Figure 2.9. The motion of the second proof mass is out of 

phase with the first and designated with the variable capacitance in the opposite direction. The 

voltages and corresponding capacitance are labeled according to proof mass and electrode 

type(force or sense). The pre-amp is a low pass filter with a pole frequency much less than the 

eigenfrequency of the resonator. The contact potential voltage is modeled with the common voltage 

source across the four capacitors. The noise is modeled with the voltage source at the negative 

input terminal to the op-amp and the stray capacitance is modeled at the positive terminal. The 

noise at the pre-amp is the dominant noise in the closed loop. 
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Figure 2.9. Complete Preamplifier Model 

Writing Kirchhoff s current law at the negative input terminal of the op-amp gives the following 

equation, 

-s(VN -Vls)Cls-s(VN -VU)CU -s(VN -V2s)C2s - 

s(VN ~V2t)C2t -sVNCN=Cfi(s + -l—WN -VJ) 
(2.4.1) 

vfl^fl 

where, 

Vcp = the voltage due to the contact potential between the silicon structure and gold alloy 

anchors. 

Substituting the following expression for the state variable 

x'=V0Ul-VN(\ + -?-) (2.4.2) 
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Equation 2.4.1 can now be rewritten, 

C 
X   =-6)ß(x   +VN—) + 

^ß 

-^[s(VN - VU)CU + s(VN - Vu)C„] + (2.4.3) 

1  [s(VN-V2s)C2s+s(VN-V2l)C2l] 
Cß 

Simplifying this expression is difficult due to the time dependence of both V„ and V2t, and 

C]t and C2t in the last two quantities. However, a simpler form is derived by taking the derivative of 

the four terms. Now, a nonlinear state evolution equation in terms of y„ y2, and x* is achieved. 

This equation can also be nondimensionalized as before. 

*-ys '-/a c/z> 

yri(VN -K^ + (VN -vu)^-]?l+ (2.4.4) 
Cfl $>\ 0>i 

Cß dy2 dy2 

where, 

©A, = cOfl/cOn = the normalized pole frequency for the charge amplifier 

Finally, the transfer function from Vout to Vpre must be determined in terms of the designated 

state variables. The component between these two points includes a high pass filter , eliminating 

any unwanted DC components of the output, and provides a high frequency gain of Rg/Rb. The 

transfer function is given in nondimensional units by, 
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where, 

wb = the normalized pole frequency of the high-pass filter 

This can be simplified by recognizing that the wb « 1 so at the sense axis resonant 

frequency, the voltage at the output of the pre-amp is simply a scaled inverted replica of the output 

voltage. The state equations are given by the state evolution equation for this stage as presented in 

Equation 2.4.4 and the output equation, 

^ =-/(*'+Ml+ 7^)) (2A6) 

2.3.1 Simplified Pre-Amplifier Model 

Simplifying the model permits a quick analysis of several important issues. First, it clearly 

shows that the signal at the output of the pre-amplifier is composed of four terms: signal, 

feedthrough, error, and a constant term. This leads to a description of feedthrough and an order of 

magnitude calculation in order to understand its effect on the output. Finally, the output voltage of 

the pre-amp is proportional to the position of first proof mass. This fact is verified using a 

simplified analysis that deals with the issue of unmatched capacitor area. The noise sources are 

discarded here. 

For the left sense plate capacitor, Cls, the voltage will produce a charge Qs one the electrode. 

Assuming that the resistance in the feedback path is large, the charge residing at the output node of 

the operational amplifier will be -Qs. The voltage at the output of the operational amplifier, due to 

all four capacitors, is given by, 

^=^ + ^ + ^- + ^ (2.4.7) 
^fi       ^fi       ^fi       ^fi 

The total charge can be represented as the summation of the individual charges. 
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QT = Qu + Qt, + Qu + Qis = («,Cl0 + ACu(t))Vu + 
(Cs0 + AC2s(0)V2s + (a2Cl0 + ACu(t))Vu(t) + (Cl0 + AC2,(0)F2,(0 

where the time dependent capacitance has been expressed to first order and the mismatch in sense 

area capacitance has been expressed with the a, term. Since the force plates are much smaller, they 

have been assumed to be equal. The electrode voltage terms in Equation 2.1.4 are rewritten, 

K = a3Ve VXI = aya + a5Vbcsq(cot) 

V2s=-Vc V2l=-Va+Vbcsq(cot) ^^ 

where oc2 , a3, and a4 are introduced into the electronics to provide three degrees of freedom. In 

general these terms will be used to null the capacitance area mismatch for the sense plates. 

Now, the vertical forces on each plate, in the simplified model, are written explicitly in 

Equation 2.1.9 and are proportional to the voltage squared on each plate. Thus, the force on each 

proof mass goes as, 

Fx *-At[{aya)
2 +(a5Vb)

2 +2a4a5VaVbcsq(oyt)]-As{a,Vc)
2 

F2 cc -[Va
2 + Vb

2 - 2VaVbcsq(o>t)] - ASV
2 

In a second order oscillator, the motion is known to lag the force by 90° and the changing 

capacitance is 180° out of phase with the motion. Thus, the delta capacitance terms can be written 

as 

AC,, = Scsa6 sin(cot) AC,, = 8cl or7 sin(tftf) ß 4 l n 

AC25 = -öcs sin(ßtf) AC2, = -Scl sin(ü)t) 

Figure 2.10 and Figure 2.11 have been constructed to show the basic first harmonic signal 

relationships for the bias and drive voltages of Vpvr=15V and Vb=lmV. It is clear that the force on 

plate 1 is in phase with a negative cosine. The position lags the force by 90° at resonance and the 

capacitance is 180° out of phase with the position. 
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Figure 2.10. Basic Linear Signal Relationships 
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Figure 2.11. Basic Linear Signal Relationships 

Substituting Equations 2.4.9 and 2.4.11 into 2.4.8 gives an expression for the total charge on the 

proof mass. The expression contains four terms. The first and third terms are the DC components, 
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the second and fifth are the desired signal terms, the fourth is the feedthrough term, and the last is 

the error term which is a higher harmonic. 

QT = («,«3 - \)Cs0Vc + («3 + ^-)ACuVe + (a2a4 - \)Cl0Va + 
«6 

! ! (2-4.12) 
(a2a5 +l)Cl0Vbcsq(6)t) + (aA +—)ACuVa+(a5 —-)ACuVbcsq(a>t) 

Using the two degrees of freedom in the electronics design, it is possible to null out the DC 

terms and the error term. If the plates are perfectly matched, these two terms will not exist. This 

leaves the feedthrough term as the only undesired term. 

The biasing could also be accomplished by putting the same bias on each plate and drive 

signals 180° out of phase. The motion of the proof masses is still out of phase because this method 

nulls the signal and feedthrough term. The disadvantage of this method is that the measured term 

becomes the error term and comes out at twice the resonant frequency with a small magnitude. The 

nulling circuits will not be discussed further at this time. For further analysis, it is assumed these 

are in place. This assumption is equivalent to assuming that the plates are matched. 

Now, the output voltage will be further simplified to show the signal is in phase with the 

position of the first proof mass. Assuming that the term due to feedthrough is negligible and that 

the plates are perfectly matched, the output voltage is given by 

K,-'2AC"\+2AC"K) PA.3) 

Now, the delta capacitance terms are calculated explicitly using an expansion. The equation for the 

capacitance for the sense plate is given by, 

_M =M(1_ZL+I } (2A14) 
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which can be written, 

Cls = Cs0 + AC,, = —— - —y- yx (2.4.15) 

The capacitance term for the force plate can be written in the same manner. Substituting the value 

for the LCU and AC,, into Equation 3.4.13 and letting both bias voltages equal the PVR voltage 

produces a simple expression for the output voltage. 

v»a=—ji7, yx (2.4.16) 

Under ideal conditions, the voltage at the output of the pre-amp will be proportional to the position 

of the first proof mass. 

2.4 Feedthrough 

Now, it is shown that the feedthrough term will not destroy the signal term. In this case, the 

feedthrough term is a square wave while the signal term is sinusoidal. For simplicity, all a terms 

are set to unity which closely resembles the actual situation. Under these assumptions, the output 

voltage, Vout, is given by, 

V   =- * out 

2ACUVC + 2Cl0Vbcsq(cot) + 2ACltVa 

cfl 
(2.4.17) 

which includes only the feedthrough and signal terms. First, the feedthrough term will be 

examined. The expressions for the delta capacitance and the DC capacitance terms were found in 

the previous section. Although the governing equations are nonlinear, it is possible to write the 

steady state solution for the first proof mass with a first order approximation in the form, y=yc- 

ypsin(©t). Grouping the DC displacement with Y0, the capacitance terms are now written, 
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y£o^f      y£o^f 
(Y0+yc) 

+ (Y0+ycy cA = c0 + AC, = ■zrrh: + ,v ...^y,sin("*) (2-4-18) 

where the dependence on the bias voltage in Y0 is now contained in yc. 

Now, the feedthrough term can be written, 

Feedthrough = -2Vb  ^°  '   -J- csq(cot) (2.4.19) 

The signal term is found in a similar manner. Using the expression for the delta capacitance 

term developed above, the signal term is expressed 

2 niAy. + A.vj 
Signal_Term = —£-'„ ,".,,/ c ypsin(fi*) (2.4.20) 

Both of these signals are shown in Figure 2.12 with the feedthrough term magnified by 10e3. The 

estimate used bias voltages of Vpvr=15V and Vb=lmV. 
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Figure 2.12. Signal and Feedthrough Waveforms 

The signal to feedthrough ratio is approximately 8.4e3 V/V and in quadrature to the position signal 

so demodulation is capable of removing most of the feedthrough. 

The demodulation will remove most of the feedthrough; however, the feedthrough term will 

shift the frequency of the resonator. For a first order estimate of the frequency shift, the resonator 

and preamplifier is modeled as a black box. The input is the probe voltage Vbcsq(cot) and the 

output is the preamplifier voltage. The model is shown below. 

Vt,csq((öt) 
K 
 _2-^ 

ms2 +b s + k   s      CA y ym jb 

'out 

Figure 2.13. Feedthrough Model 
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where, 

Ks = the oscillation amplitude to output voltage gain 

The constant term in the transfer function represents the feedthrough term and other term is 

the resonator term without the cubic. First, assume the feedthrough term is eliminated. When the 

loop is closed, the resonator will operate at 90° of phase shift. The addition of the feedthrough term 

will change the phase characteristic and the frequency of the 90° phase will shift slightly. In high Q 

systems, the sharp phase transition causes the shift to be small. In this system, there was no 

frequency shift with a frequency resolution of 0.01 rad/s or .08ppm. The feedthrough does not 

significantly alter the resonant frequency and the quadrature signal can be eliminated using 

demodulation. 
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Chapter   3 

THE CLOSED LOOP MODEL 

3. Overview of Closed Loop Controllers 

The two controllers modeled in this section represent the second major subsystem for the 

PVR. A self excitation loop is presented that sustains vertical oscillations of the resonator. The 

phase locked loop is also presented and the frequency control of the device is examined. The 

components of both the oscillator loop and phase locked loop are presented along with their state 

space description. The stability of the oscillator loop depends entirely on the magnitude of the 

cubic nonlinearity. The stability analysis extends the analysis of the Duffing Equation in the 

previous chapter. The goal of this chapter is to explain the overall operation of the PVR from the 

block diagram, develop a state space model for the closed loops, and develop a stability criterion 

for the oscillator loop. 

3.1  The Closed Loop Micromechanical Oscillator 

The oscillator loop and phase locked loop are shown for a single resonator in Figure 3.1. 

The loop on the left, the oscillator loop, is a simple feedback loop that insures sustained oscillations 

are maintained in the plant. The loop on the right is the frequency control loop or phase locked 

loop which locks the resonator frequency to the reference frequency. Since there is no phase 

information carried from the frequency comparison to the PVR voltage, a minimal requirement is 

frequency lock. However, the phase lock provides for more robust frequency lock. Without the 

phase lock, several cycles will slip before the frequency changes and corrections are brought around 

the loop. The macro model of the voltage controlled oscillator(VCO) simplifies the dynamics of 

the micromechanical resonator discussed in the previous chapter. 
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Figure 3.1. Single Proof Mass Block Diagram 

The oscillator loop is shown in the left of Figure 3.1. The oscillator loop is very similar to a classic 

active filter tuned oscillator with filtering equivalent to a bandpass. The criteria for sustained 

oscillations include unity magnitude and zero phase of the loop gain [6]. 

The signal path through the block diagram begins with the injected current coming off the 

proof masses passing through the charge amplifier which acts as an integrator. The amplitude of 

the first harmonic of the output voltage from the integrator is proportional to the position of the 

proof mass. The signal is then high passed to eliminate any DC value. Next, the signal is phase 

shifted +90° by a low pass filter with a pole frequency much less than the eigenfrequency of the 

resonator. The first harmonic is essentially integrated and inverted in this stage. Finally, the 

sinusoid is hard limited and the resultant square wave passes through an attenuator to produce the 

small amplitude drive signal. If the frequency control loop is not closed, the square wave signal is 

added to an externally supplied positive and negative DC signal which substitutes for the PVR 

voltage. Finally, these signals are applied to the sense plate which results in a phase shift of -90° 

from the force to position transfer function. The output of the preamplifier is proportional to 

position and the -90° is from the input of the resonator to the output of the preamplifier. Thus, 

there is a total phase shift of 360° around the loop and high gain. The PVR voltage at the output of 
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the loop filter is summed with the signal out of phase with the force and applied to the force 

electrode. The PVR voltage is also applied to the sense electrode. The oscillation loop self excites 

the oscillator by applying a force that is in phase with the velocity of the proof mass and at the 

frequency of oscillation. In a more advanced device the magnitude of the sinusoid signal added to 

the PVR voltage will be adjusted in order to maintain amplitude control. The typical operating 

amplitude is 10% of the nominal gap distance. The amplitude control loop is not accomplished in 

this thesis. 

The second loop is slightly more complicated. An external reference frequency is hard 

limited and compared with the hard limited frequency input from the oscillator. These signal are 

passed to a phase detector (PD) whose DC output is a voltage proportional to the difference in 

phase. The PD acts as a mixer or multiplier so additional high frequency components exist. These 

are attenuated by sending this signal through a loop filter which has a low pass characteristic before 

it is finally amplified and the appropriate precision voltage reference signal results. The PVR 

voltage is applied to the VCO which produces a signal whose frequency is a nonlinear function of 

the PVR voltage. The PLL adjusts the PVR voltage until the frequency of oscillation in the 

resonator matches that of the external reference. 

In addition, the frequency control loop acts as an amplitude control loop if the pressure in 

the package does not change as discussed in following chapter. The PLL sets an upper bound on 

the amplitude because as the damping increases, the pressure increases, and the amplitude 

decreases. An increase of pressure due to leakage can only result in a lower amplitude. 

3.2 Components of the Oscillator Loop 

As indicated in section 3.1, the oscillator loop is shown in the left in Figure 3.1; it consists 

of the micromechanical resonator, the preamplifier, high pass filter, 90° phase shifter, hard limiter, 

and attenuator. Each of the components of the self exciting oscillator loop are examined in the state 

space form used to implement the numerical simulation of this loop. It is assumed throughout that 

a steady state oscillation or limit cycle does exist at the resonant frequency of the system. 
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3.2.1 State Space Model for the Resonator 

The simulations require the use of a large and small amplitude model. The small amplitude 

model can be written in linear state space form while the large amplitude model cannot. 

Simulation of the large amplitude model requires the use of the nondimensionalized 

dynamic equation for a single proof mass, Equation 2.2.4. 

This equation can be written in state space form as two first order differential equations. 

~    1      iA,V?+AtV?)    1 dy        1 i 
dt~    Qy 

ytn 

dy    i, 
*-> 

(3.2.3) 

where, 

x,=y x2=y' (3.2.4) 

are used as the state variables. Using x, and x2 as state variables, these two equations are used to 

simulate the dynamics of the proof mass. 

The nonlinear differential equations for the resonator can be written in linear state space 

form using the small amplitude model for the resonator dynamics shown in Equation 2.2.6. The 

nonlinear stiffness terms are linearized with the use of describing functions. The describing 

function is defined as the ratio of the amplitude of the first harmonic component of the output and 

input signals. In general, this expression is a function of the amplitude and frequency of the input 

signal. The describing function used in this thesis corresponds to sinusoidal input signals. 
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The cubic describing function is easily obtained by expanding a cubed sinusoid, substituting 

basic trigonometric relationships, and examining the amplitude of the resulting fundamental 

harmonic. The output of a simple cubic function is, 

^ = V (3-2.5) 

Now, assume the input sinusoidal function is normalized and given by, 

x = Asm(cot) (3.2.6) 

Inserting 3.2.6 into 3.2.5 and expanding the cubed sine term produces an expression that includes 

an output term at the fundamental resonant frequency. The ratio of the output amplitude of input 

amplitude is given by, 

Nc(A,ä) = lk3yA
2 (3.2.7) 

where the notation for the lumped parameter cubic term has been used. This linearization allows 

the normalized linear spatial frequency to be written, 

-k   A2-l + -^ «2 

4**A    -l+4   k 
kr=l + -k3yeA

2=l + --f^A2 (3.2.8) 

The describing function for a quadratic term does not exist because it does not produce any terms at 

the fundamental harmonic. The symmetry of the oscillator should minimize the effects of the 

quadratic or in general, any even stiffness term. This was seen in the analysis in section 2.3.1 

where the DC output signal was shown to be zero if the two proof masses were perfectly matched. 

Since the plates are moving out of phase, the current from one proof mass due to the quadratic term 

should be canceled by the other plate just as the DC component. For these reasons, the quadratic 

term is discarded in writing the state space model. 
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Finally, the linear state space model can be written for both proof masses. The left proof 

mass is labeled one, the right proof mass is labeled two and the state space variables for the second 

order system are the position and velocity of each proof mass. Given these assumptions, the 

linearized state evolution equation can be written 

d_ 

dt A 

0 i lr 
l 

-(1 + -V4 )   -^ 0.L 

\y\~ r°i • + 
LftJ i_ i j ?,] (3.2.9) 

This state space model of the proof mass dynamics is based upon small amplitude 

operation. If both resonators are considered to be perfectly matched, the injected current on each 

proof mass is the same and the single resonator model is used. The linearized state space model for 

both proof masses is easily written from Equation 3.2.9 assuming that only the out-of-phase mode 

is excited. 

3.2.2 Preamplifier, Gain Stage, Phase Shifter, and Hard Limiter 

The preamplifier was modeled in the previous chapter along with the high pass filter used as 

a gain stage with Equations 2.4.2,2.4.4, and 2.4.6. The phase shifter can be modeled as a low pass 

filter with the break frequency much less than the eigenfrequency of the resonator. The transfer 

function for the stage is given by 

Tps(s) = 
K ps 

s + to 
(3.2.10) 

ps 

where, 

KpS = the DC gain of the filter (negative), and 

cops = the break frequency of the phase shifter. 

This equation can be transformed into a differential equation and nondimensionalized: 
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Vp*=Vpre^-Vpßps (3.2.11) 

where, 

a>ps = cOpS /©„ = 0.01 = normalized break frequency 

Vps = voltage at the output of the phase shifter 

Placing the break frequency two decades before the eigenfrequency of the resonator, the phase of 

the low-pass filter will be approach 90° at the eigenfrequency. Proper design will insure the gain at 

the eigenfrequency is approximately unity. 

The voltage at the output of the phase shifter is passed through a hard limiter.  The hard 

limiter will contain some amount of hysteresis. This can be modeled with the following algorithm. 

v  _J+1      ifVps>SandVhl=-\ 
""["I      ifVps<-SandVhl=\ <3-2-12> 

where, 

8 = 0.003 V = the hysteresis width of the relay 

This completes the oscillator loop. The loop will sustain oscillation because there is a total of 360° 

around the loop. The resonator contributes -180° from the voltage to force function and another - 

90° from the force to position, or output voltage, function, the high-pass filter contributes another - 

180°, and the phase shifter contributes +90°. Steady state oscillations will result in this loop. 

3.3 Components of the Phase Locked Loop 

The frequency control loop in shown on the right side in Figure 3.1. The frequency control 

loop (PLL) contains the resonator, the phase detector, and loop filter. Under ideal assumptions, the 
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voltage that appears after the hard limiter will be a signal out of phase with the velocity of the first 

proof mass. This signal is compared with the external oscillator in the phase detector. 

The operation of the phase detector can be modeled as a mixer or four quadrant multiplier. 

One typical analog multiplier which is useful in the simulations uses two sinusoidal inputs. 

Assume that the input sinusoids are given by the following two signals. 

je,(0 = Ax cos(öy)       x2(t) = A2 cos(o)2t + <f>en) (3.3.1) 

If the frequencies of both signals are equal and the second harmonic component is ignored 

due to filtering, the phase/voltage characteristic is given by 

CLA. A 
^--y^cosWU (3.3.2) 

where a equals the gain of the phase detector. The linearized phase/voltage characteristic in the 

vicinity of 7t/2 is 

Vpd=Km<t>err=-^<t>en (3.3.3) 

In the phase detector used in the hardware, a digital phase detector is used which functions as an 

exclusive OR gate. Square waves are used as the input to this device with an upper and lower value 

of -Vss to Vss. The voltage at the output of the phase detector is approximated with the following 

transfer characteristic. 

2V n TC 
Vpd = Km*m =-^<Perr ~^< <t>err < f C3'3"4) 

Both of these phase detectors lock with a steady state phase error of 90°. 
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The loop filter is a proportional plus integral controller with an additional low pass. The 

general form is shown in Figure 3.1. This equation is easily converted to state space form and 

expressed in the following state space equations. 

x, 0      0 

1    - fi>] _||_x2 

+ 
KLco2 

H°  i] 
L*2. 

+ [0]w 

(3.3.5) 

where, 

xi = arbitrary first state variable, and 

x2 = PVR voltage and output state, and 

KL = loop filter gain coefficient, and 

Vpd = u = phase error signal from the phase detector and input signal 

This completes the PLL modeling. The loop filter was chosen because of the integrator in the 

forward path allows steady state errors to be integrated out. The lead and lag terms provide the 

necessary gain and phase margin. Additionally, the lag term provides attenuation to the periodic 

output of the phase detector that is at twice the eigenfrequency of the resonator. The PLL integrates 

the phase error to zero and forces the external oscillator and the micromechanical resonator to be 

identical in frequency. The operation of the PLL is addressed further in chapter 6 which discusses 

the hardware used to implement the controller. 
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3.4 Stability of the Oscillator Loop 

Previous results with an oscillator loop for a single element micromechanical resonator 

indicated that the stability of the limit cycle is dependent upon the cubic nonlinearity; but was 

unconfirmed [8]. The existence of a limit cycle and stability criterion are confirmed here. 

The Duffing Equation given in Equation 2.2.6 simplifies to a self excitation loop similar to 

a classic van der Pol Oscillator when the oscillator loop is closed [10]. A simplified model for the 

oscillator loop is shown in Figure 3.2 below. 

The closed loop form of the Duffing Equation is, 

'i+^-KfNHL)5c+(l + Ncs)x=0 (3.4.1) 

where, 

Ncs = describing function for a cubic spring, and 

NHL = describing function for a hard limiter, and 

Kf = nondimensionalized forcing constant. 
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Figure 3.2. Simplified Oscillator Control Loop 

The damping will be negative at small amplitudes and positive at large amplitudes due to 

the self excitation signal. Somewhere in between these extremes, there exists a point where the 

average damping over a cycle is zero and steady oscillations are maintained. The limit cycle occurs 

when the velocity coefficient goes to zero. 

£ =*/*!* (3.4.2) 

The approach to the limit cycle from both extremes is shown dramatically in Figure 4.6 and 

Figure 4.8 which depict the full oscillator loop start-up transient. The simulations for the stability 

analysis performed here use an initial condition to place the resonator close to the limit cycle. 

The derivation of the stability criterion for this limit cycle is performed by Kossuth [8]. 

Perturbations are applied to the amplitude and frequency in the characteristic equation for the 

closed loop. The stability criterion for the oscillator loop is derived using a Taylor expansion, 

assuming small ky3e and large Q. The stability criterion is given by, 
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2 + jky3>0 (3.4.3) 

which implies a stable system for ky3 > -0.5333. However, as ky3 increases, the Taylor expansion 

used in the derivation no longer applies. 

The results of simulations with the oscillator loop for the resonators confirm the stability 

criterion and agree well with the predicted results, given the breakdown of the approximation at 

large amplitudes. The simulations used the state space equations presented in section 3.2 for the 

oscillator with VpvT=15V and Vb=lmV. All of the simulations used an initial position condition to 

place them close to steady state. Figure 3.3 shows the position signal for the ky3 values listed 

below each subplot. These plots neglect the limit of snapdown in order to illustrate the approach to 

instability. The initial plot is the position with a normalized cubic stiffness of -0.0041. As the 

normalized cubic stiffness value becomes more negative, the frequency visibly decreases due to 

spring softening and the amplitude of oscillation increases dramatically. 

68 



Position (m) 

x10 x10 x10 x10 

>3 

0     0.005   0.01   0     0.005   0.01   0     0.005   0.01   0     0.005   0.01 
Time (s) 

-.0041 -1 -1.3 -1.34 

Figure 3.3. Position Signal for Various Cubic Nonlinearity Values 

As the amplitude quickly rises, the Taylor expansion used to derive Equation 3.4.3 is no longer 

applicable. The simulations determined the stability point to be at ky3 = -1.34 where the position 

diverges. Figure 3.4 displays the phase plane plots accompanying the position series plots. 
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Figure 3.4. Phase Plane Plot of Nondimensional Position and Velocity 

It is clear that a stable limit cycle exists for the first three while the fourth simulation diverges. 

The unstable point does not pose a problem for the operation of the PVR.  There are no 

realistic biasing conditions which would create a cubic nonlinearity value required for instability. 
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Chapter   4 

BASELINE DESIGN AND MODEL SIMULATIONS 

4. Overview 

The first order design analysis and baseline design are presented in this chapter. The closed 

loop, nondimensionalized, one-dimensional, lumped parameter model was simulated using 

Matlab© with the files contained in Appendix B. The nonlinear, second-order equation was 

separated into two standard form first-order differential equations. The resonator was represented 

with the state space model in Equations 3.2.2 and 3.2.3. The preamplifier and gain stage were 

modeled using equations 2.4.4 and 2.4.6. The phase shifter model is shown in Equation 3.2.11 and 

the hard limiter in Equation 3.2.12. Finally, the phase detector was modeled with a sinusoidal 

detector as shown in Equation 3.3.2 and the loop filter state space model is given in Equation 3.3.5. 

Several cases were run to examine different aspects of the startup and steady-state behavior of the 

oscillator and PLL loop. 

4.1  Hand Results and Baseline Design 

The first order design analysis was conducted to determine the feasibility of the PVR. It 

was also used to create an optimized baseline design and a prototype design. The design analysis 

used first-order approximations for many steady state system characteristics such as output 

amplitude of the resonator and oscillation amplitude of the proof masses. The total design analysis 

is presented in Appendix A in the Excel© worksheet along with the formulas for all the 

approximations. Both the baseline and prototype design are presented in full. The items written 

with a star before the name are entered into the spreadsheet while the other parameters are 

calculated using first order approximations. The parameters of interest in both designs are 

presented in Table 4.1. 
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Table 4.1. Baseline and Prototype Design Parameters 

Prototype Design Optimal Design 

2.73e-9 kg 3e-9 kg 

zero bias gap, Yo(0) 2.5e-6 m 2.5e-6 m 

total area,A ££: j.y>    ■ 1 1.35e-7m2 1.6e-7m2 

.   ■■ >;i..V'feu»!BtjfiSi:*v"'.. .:.Ta; .... 
..     • '••      -^■.•.■..■ii^t;--..--.. ••-.. „..-.-      -_ 

quÄ^r5SMi!:^ 19190 4500 

zero ,vl bias V resonant 

frequeh%j ©Ö"/; ■'"'•". 

26850 rad/s 26850 rad/s 

P^^ltege^^V,: 15 Volts 15 Volts 

£££53     »/     ■ ..! Jl* 1<-2U( i\ ; ;v ■ »i «        .„JE* J. 

: • :^*sM&i&r 
Probe voltage, y^^j lmV lmV 

Drive Amplitude 1.25e-7m 1.16e-8m 

All simulations will use the prototype design. 

4.2 Simulations 

The following simulations looked at both the phase locked loop, the oscillator loop, and the 

full PVR model for the prototype design. The several cases used in each simulation confirmed the 

desired operation of the loop and helped to analyze the effects of perturbations in certain 

parameters. The following chapter introduces the perturbations analyses used to satisfy system 

requirements on the PVR. 
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4.2.1 Phase Locked Loop Simulations 

The phase locked loop simulations of the resonators used the phase detector model, loop 

filter model, and a VCO with the transfer characteristic KQ/S , where the 1/s accounts for the 

integration from frequency to phase and KQ is the frequency gain with units rad/sec/V. The transfer 

characteristic given above was used for the VCO in place of the full resonator equations, 3.2.2 and 

3.2.3. The simplification was used in order to reduce the simulation time by eliminating the long 

time constant associated with the resonator. 

The phase locked loop contains a nonlinear VCO given by the transfer characteristic shown 

in Figure 1.4. In the first group of simulations, a linear VCO was used while the second group of 

simulations used the full nonlinear VCO. In all simulations, it is assumed that the oscillator loop is 

closed and has locked onto the resonant frequency. All the initial states are set to a value of zero. 

4.2.1.1 Linear Simulations 

The linear VCO simulation used a value for Ko such that for an input voltage equal to the 

desired PVR voltage, the output frequency is equal to the frequency obtained from the nonlinear 

VCO for that input voltage. This will simplify comparisons between the linear and nonlinear 

simulations. The acquisition of lock is a complicated process that depends on many parameters in 

the phase locked loop. This loop design will theoretically always acquire lock; however, there 

exists two distinct regimes for the phase locked loop. The definition of these two regimes is done 

with the loop bandwidth of the PLL. The initial difference in frequency will lie on one side or the 

other of this bandwidth. Both of these regimes are simulated in this section. 

The first simulation uses a desired precision voltage of 5 V. This is accomplished by setting 

the external oscillation frequency to the frequency corresponding to the desired precision voltage 

according to Figure 1.4. The electrostatic characteristic shows the shift in frequency from zero bias 

to 5 V is approximately 330 Hz which is within the designed bandwidth of the closed loop 

described in chapter 6 and defines the first distinct region of acquisition. The acquisition of lock is 

shown in Figure 4.1, where the precision voltage rises quickly to 5 V. This signal is unfiltered and 
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contains a high frequency component at twice the resonant frequency from the phase detector since 

this device locks at 90° of phase difference. 

Acqusition of Lock for Linear VCO 
R 

7 Desired Precision Voltage of 5 V - 

6 
/       \ - 

5 

-    / 
Q. 
> 

- 

3 -  / - 

2 - J ■ 

1 -/ - 

n ■ 

( D                                  0.005 0.01 
Time (s) 

0.0 

Figure 4.1. Acquisition of Lock for Linear VCO 

In Figure 4.2, the desired precision voltage reference is 7 V and the difference in zero bias 

frequency to full bias (7 V) frequency is approximately 655 Hz and larger than the loop gain 

bandwidth of the PLL. The acquisition phase takes considerably longer in this case. The initial 

difference in frequencies at the phase detector is large and the output has large oscillations at the 

difference frequency. As the voltage oscillates, the VCO alternately moves closer and further from 

the reference frequency. When the VCO frequency moves towards the reference, the difference 

frequency decreases. This causes the voltage sinusoid to have an asymmetrical waveform with a 

larger amplitude as the VCO frequency moves toward the reference [6]. This results in a slight DC 

voltage that is integrated and ultimately drives the PLL into lock with the desired PVR voltage. 
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Acquisition of Lock for Linear VCO 

0.01 0.02 0.03 
Time (s) 

0.04 0.05 0.06 

Figure 4.2. Acquisition of Lock for Linear VCO 

4.2.1.2 Nonlinear Simulations 

The nonlinear simulations were performed similarly to the linear simulations described 

above. The unique difference is the use of the nonlinear electrostatic characteristic of the 

resonators. This loop was optimally designed to operate at the final bias voltage on the electrostatic 

characteristic. The performance at low voltages is degraded according the low gain provided by the 

VCO. This was observed in the nonlinear simulations below by a substantial increase in the time to 

lock onto the reference frequency. 

The first simulation is performed with a desired PVR voltage of 5 V and is presented in 

Figure 4.3. 
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Acquisition of Lock for Nonlinear VCO 

0.005 0.01 
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Figure 4.3. Acquisition of Lock for Nonlinear VCO 

The low gain provided by the VCO at low bias voltages is lowering the bandwidth of the loop gain 

and causing the difference in frequency to appear larger initially. The acquisition time has 

approximately doubled from the linear case. As the voltage is further increased to 7 V, the time is 

again found to approximately double from the linear case. 
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Acquisition of Lock for Nonlinear VCO 
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Figure 4.4. Acquisition of Lock for Nonlinear VCO 

The many test cases for the linear and nonlinear VCO indicate that the nonlinear VCO associated 

with the resonator takes approximately twice as long to acquire lock compared to the linear case. In 

this application, acquisition speed is not a concern as long as it not more than a few seconds. 

4.2.2 Oscillator Loop Simulations 

The oscillator loop simulations contained the full dynamic model for the resonator, gain 

stage, low pass filter, hard limiter, and attenuator. The noise at the pre-amp was modeled with a 

single sided white noise power spectral density. All plots are aliased due to the high frequency and 

long time constants associated with the resonator. The first case set all initial conditions to zero and 

applied a 15 V bias for Vpvr. The position of the proof mass is shown below in Figure 4.5. In this 

start-up transient, the noise has little effect on the startup. The bias voltage causes an oscillation to 
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develop which effectively starts the resonator and brings it to steady state with the feedback 

network of the oscillator loop. 

x10"' Start Up Transient of Resonator Due to Bias 

0.2 0.3 0.4 
Time (s) 

0.7 

Figure 4.5.   Aliased Start Up Transient of Resonator With Bias Applied 

The phase plane is presented below and shows the oscillator progressing towards the limit cycle 

with positive damping. 

78 



0.06 
Phase Plane of Start Up With Bias Voltage 

T- 

-5 -4 -3 
Position (m) 

-2 -1 

x 10 

Figure 4.6. Phase Plane of Start of With Bias Voltage 

In the second simulation, it is assumed that the bias voltage of 15 V has been applied and steady 

state has resulted with a constant displacement and zero velocity. The oscillator loop is then closed 

with only preamplifier noise to drive the loop. 
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x 10"8 Startup Transient of Oscillator Loop Due to Preamplifier Noise 

Figure 4.7. Aliased Startup Transient due to Preamplifier Noise 

The signal path begins with the white noise at the preamplifier. This is amplified and put through 

the high pass and low pass filter. The signal is then applied to the hard limiter. The attenuated 

signal is placed on the force electrodes. The high Q, bandpass characteristic of the sense axis 

amplifies the frequency components at the eigenfrequency and the plates start to oscillate. The start 

up transient is a smooth transition to the full amplitude oscillation at the resonant frequency. The 

phase plane plot shows the approach to the limit cycle of the oscillator loop. 
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Aliased Phase Plane Plot of Start Up with Preamplifier Noise 
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Figure 4.8. Phase Plane of Start-up Transient with Preamplifier Noise 
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C h a p t e r   5 

SYSTEM REQUIREMENTS 

5. Overview 

The extensive modeling developed for the PVR is used to construct an error model that 

demonstrates the viability of the PVR. The error model quantifies the effect of parameter 

perturbations on the voltage stability and provides the necessary criteria to develop a baseline 

design with optimal performance characteristics. The prototype design parameters are used 

throughout the analysis followed by the optimizations that produce the baseline design. The current 

prototype device cannot achieve 0.4 ppm voltage stability without an amplitude control loop 

because the pressure cannot be held to the stability requirements. The optimal design satisfies the 

requirement without the use of an AGC. The addition of an AGC would increase the performance 

of both designs well beyond the desired 0.4 ppm voltage stability. The goals of this chapter are to 

understand how the PVR model impacts the performance of the device, construct an error model, 

and develop the baseline design. 

5.1   Voltage Stability 

The single desired requirement for the PVR is a total voltage stability av/V of 0.4 parts per 

million (ppm). The micromechanical resonator is utilized as a voltage controlled oscillator because 

its output frequency is dependent upon the input bias voltage. Due to this transfer characteristic, 

the voltage stability required for the PVR translates directly into a stability criterion for the 

oscillation frequency. 

The oscillation frequency of the device is a function of a number of parameters including 

stiffness nonlinearity from the cubic electrical spring term, thermal variations, damping and 

pressure, contact potential, the time dependent probe voltages, and the feedthrough discussed in 
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section 2.4. Each of these quantities exerts an effect on the resonant frequency. Assuming the 

fluctuations in the individual measurements are uncorrelated, there will be no covariance terms and 

the total frequency variance will simply be the sum of the individual variance terms. The effects 

from each parameter will be examined in order to determine the overall effect on the frequency 

stability. The analysis uses differential notation(doo) and statistical notation(aJ interchangeably 

because some parameters are modeled as deterministic while others are modeled as random 

variables. 

5.2 Frequency Stability 

The required frequency stability to meet the 0.4 ppm voltage stability is an important 

parameter of device performance. The key to good voltage stability is operation on the steep slope 

of the electrostatic characteristic shown in Figure 2.4 where the frequency sensitivity to changes in 

the PVR voltage is large. Operating on this point of the transfer characteristic will allow greater 

frequency variations for a specified voltage stability criterion. Snapdown is possible as the bias 

voltage is increased. The device cannot operate too close to the snapdown voltage shown in Figure 

2.4. 

Consider the frequency stability that is required by the PVR for a desired voltage stability. 

In this application, the VCO is highly nonlinear with an analytical relationship relating the resonant 

frequency to the precision voltage reference applied to the VCO that is closely approximated with 

the following equation using Equation 2.2.10. 

(5.2.1) 

where, 

con = the nominal resonant frequency 
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ky,,, = the y axis cubic mechanical stiffness, 

m = mass of the proof mass 

y = fringing coefficient for the capacitance 

Y0 = nominal gap between the proof mass and bottom electrodes 

ky = linear spring term that includes mechanical and electrical parts 

A = parallel plate area that the voltage Vpvr is applied 

For the purposes of the error analysis throughout this chapter, the functions will be 

considered to be an exact representation of the behavior in order to propagate the errors. Using the 

error propagation equation, the relative uncertainty or stability in the oscillation frequency is given 

by 

Oy  ' pvr I £$A 

co     Vpw a2 \mYl 
(5.2.2) 

Assuming a constant voltage stability of 0.4 ppm is desired, the necessary angular frequency 

stability appears to rise according to the square of the PVR voltage. However, as the bias voltage is 

increased, the proof mass moves downward and the nominal gap is decreased. The figure below 

shows the relationship of the allowable frequency instability with increasing bias voltage given the 

0.4 ppm voltage stability. As the PVR voltage is increased past 10 V, substantial gains in 

frequency stability are achieved. 
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Angular Frequency Stability vs. PVR Voltage(Analytical) 
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15 

Figure 5.1. Angular Frequency Stability 

Using the prototype design parameters with a PVR voltage of 15 V, the oscillation 

frequency is approximately 20 kHz compared to an oscillation frequency of 26.8 kHz with zero 

bias. The corresponding frequency stability is 0.29 ppm as shown in Figure 5.1. 

The frequency stability can also be estimated from experimental data. The electrostatic data 

presented in Figure 2.3 only ranges from -5 V to +5 V. The decrease in nominal gap discussed 

above will cause the dispersion curve to bend downward more steeply as the voltage is increased. 

Therefore, the previous estimate is more accurate. This estimate is used to compare and confirm 

the previous estimate in the range of 5V. The data presented in the electrostatic characteristic in 

Figure 1.4 is fit with a second order polynomial of the form 

a) = c0+cV+c2V. pvr (5.2.3) 
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Again, the error in angular frequency due to the error in the PVR voltage is given by 

CO V   6>{CX     lClV) 
(5.2.4) 

Where the term in parenthesis is simply the slope of the electrostatic characteristic at the voltage 

reference. Using the parameters from the unit tested in Figure 1.4, and operating at the same point 

used above, the frequency stability is given by 0.13 ppm which agrees within an order of magnitude 

with the analytical results. Figure 5.2 shows the predicted frequency stability as a function PVR 

voltage from the test data. Within the range of 5 V, the stability agrees closely with the analytical 

model. 
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Figure 5.2. Angular Frequency Stability (Test Results) 
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5.3 Amplitude of Oscillation 

The frequency stability translates into a required amplitude stability requirement. The 

electrostatic force produces a nonlinear cubic spring term. The cubic term is linearized using 

describing functions. The linearization demonstrates that this term causes the frequency to become 

dependent upon the amplitude of the oscillation. The frequency dependence is derived in the 

analysis of the Duffing Equation in Chapter 2 and the state space model of the resonator in Chapter 

3. In Equation 3.2.4, the shift in nondimensional resonant frequency as a function of amplitude is 

shown to be 

where, 

cor = co/©n = nondimensional resonant frequency 

ky3e = the y axis cubic spring term due to the electrostatic force, 

ky = linear spring term that includes mechanical and electrical parts 

A = steady state oscillation amplitude 

The expression for the resonant frequency is normalized to the resonant frequency when the third 

order term is discarded, con. The relative error or stability in the resonant frequency due to the 

relative error in amplitude is given by 

=   A~AT~
A
 — (5-3.2) cor      A   4k        cor

2 v       J 
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CO 
The frequency sensitivity to variations in amplitude (——) is optimized by making the oscillation 

°A 
A 

amplitude small with regard to the nominal gap distance.  Additionally, the normalized resonant 

frequency   on the right side in the above equation will approximately equal unity as the cubic 

nonlinearity only slightly shifts the frequency. 

Assume the device is operated with the prototype design parameters. The nondimensional 

shift in resonant frequency due to the cubic term is 1.52e-3 as shown in Appendix A. The 

amplitude stability required to maintain the 0.3 ppm angular frequency stability is 98 ppm, 

representing a significant level of control. This requirement can be reduced several orders of 

magnitude by reducing the quality factor, reducing the sense plate area, decreasing the mass of the 

proof mass, or lowering the unbiased gap distance. The only method of decreasing the frequency 

sensitivity to amplitude variations without reducing the voltage stability is by increasing the 

pressure inside the sealed resonator or reducing the probe voltage. 

5.3.1 Pressure and damping 

The pressure in the sealed resonator packages is found to range between 1-5 mTorr [3]. In 

this regime, known as the molecular regime, the primary damping mechanism is the "independent 

collisions of non-interacting air molecules with the moving surface" [2] of the proof mass. The 

mechanical damping associated with the structure is negligible. In this region, the quality factor is 

inversely related to the pressure. Damping is also inversely related to the quality factor which 

means pressure and damping are linearly related in this regime. 

The physical effects of a pressure change in the resonator package dictates how the 

frequency changes. As the seal degrades and pressure increases, the quality factor of the resonator 

will decrease. The decreased quality factor reduces the amplitude to force ratio. The two important 

cases are with and without an amplitude control loop. 
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Without an amplitude control loop, the oscillator will remain locked onto the resonant 

frequency with an increase in pressure; however the amplitude will decrease. If the change in 

amplitude does not meet the amplitude requirement in section 5.3 , the PVR loses its stability. The 

frequency sensitivity to amplitude variations is 

co. 

4&„ SJ 
(5.3.3) 

The statistical descriptions are more appropriately described with differential changes. The 

frequency stability is rewritten using Equation 5.3.4 and explicitly includes the pressure change that 

causes the amplitude change. 

dco. 

co. 

3*„ 1 A 

4Jfc„ co. 

dA_dP_dQ 

A dQdP 
(5.3.4) 

The most convenient way of simulating the frequency shift from a pressure change is using the 

appropriate quality factor shift. The amplitude and quality factor are known to be linearly related 

from Equation 2.2.19. This indicates that the relative shift in amplitude equals the relative shift in 

quality factor. The frequency sensitivity to changes in quality factor (pressure) is written in the 

following useful form 

dcor 

_aJ_ 
dQ 

Q 

f \ 

4k y       ar
2; 

(5.3.5) 

Thus, the frequency sensitivity to a quality factor shift is identical to that of amplitude variations. 

The relative uncertainty in the quality factor is equal to the negative relative uncertainty in the 
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pressure because these two quantities are inversely related.   This indicates that the maximum 

allowed shift in pressure that will meet the frequency stability requirement is 98 ppm. 

Simulations were constructed to confirm the accuracy given by the first order design study 

value of 98 ppm pressure stability. The long term magnitude of pressure leakage on the sealed 

resonator units is not known. For the simulations, the pressure and quality factor are allowed to 

change according to the values listed in Table 5.1. 

Table 5.1. Frequency Sensitivity Due to Quality Factor Shift 

Quality Factor Change     Baseline 0.1% 0.01% 

Resonant^^Wequency* 133884.67 133876.27 133884.08 133884.72 

;(rad/s)#*~3^lä'N" "■ 5 2 5 9 

; Frequency-Shift (ppm)'•'••■ 0 62.8 4.4 0.40 
- • '•.' .''■. %Jr1^*!^^n^^^j«,'~ >' • • 

For the simulations in Table 5.1, the prototype design parameters were used. The zero bias quality 

factor and resonant frequency were 19190 and 26829 Hz respectively. The simulation uses the full 

differential equation describing the proof mass motion, the oscillator loop components, and 

includes an artificial phase locked loop with 3 state variables as a convenient method for measuring 

the frequency of the oscillator as the quality factor changed due to pressure reductions. The 

simulation set the initial position of the proof mass so the system reached steady state rapidly. 

The results indicate that at the operating voltages chosen for the prototype design, it is 

necessary to hold the pressure in the package to at least 0.01% over the lifetime of the device. This 

matches the expected 98 ppm calculated for the amplitude stability and the first order design will be 

used for any further estimates.   This requirement on the pressure is much too stringent for the 
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current packaging and dictates a design change to achieve the required frequency stability of 0.3 

ppm. 

The simplest design change requires the addition of an automatic gain control loop which 

adjusts the magnitude of the probe voltage. With an amplitude control loop, the AGC loop will 

adjust the magnitude of the square wave in order to maintain a constant amplitude. The effects of 

changing probe voltages are examined in the following section and found to have a negligible effect 

on the resonant frequency over any realistic range. The implementation of an AGC loop will 

certainly boost performance but was not designed in this thesis. 

The next design option is to reduce the frequency sensitivity to amplitude variations, 

allowing larger changes in the amplitude and pressure. The physical adjustments that achieve this 

larger scale factor are described in section 5.3. These changes are made in the optimized baseline 

design. 

5.3.2   Drive Voltages 

The voltage applied to the force plates includes a bias identical to the bias applied to the 

sense plate and a probe voltage. The probe voltage is a square wave with a fixed magnitude. The 

effect of changes in the magnitude of the probe voltage are important as there will be considerable 

switching noise associated with these signals. 

The first effect of changes in the probe voltage is the resultant DC bias from squaring the 

electrode voltage. The first order design calculations provide a convenient estimate of the impact. 

With the prototype design and 15 V applied to bias the force and sense electrodes, a 1 mV drive 

voltage moves the proof masses 10% of the nominal gap. The DC force and stiffness generated by 

the drive signal is found to be 1.5e-10 that of the bias signal as shown in Appendix A. This 

confirms that the probe voltages can change dramatically with no significant direct effect on the 0.4 

ppm voltage stability. 
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The probe voltage also affects the oscillation frequency indirectly through the oscillation 

amplitude. The probe voltage is directly proportional to the amplitude of oscillation to first order. 

This indicates the probe voltage must be held to the same stability requirements as the amplitude. 

For the prototype design, the probe voltage stability must be 98 ppm. A simple voltage divider 

modeled with typical thermal noise will satisfy this stability requirement. 

Consider a resistive divider with a 5 Vpp square wave at the input. This models the square 

wave at the output of the hard limiter in the oscillator loop. The root mean square value of the 

Gaussian thermal voltage noise for each resistor is given by Vms. 

vrms1 (± R2 

O + 
vb"vprobe 

£)  vrms2 

Figure 5.3. Voltage Divider for Probe Voltage 

The thermal noise spectral density for R,=2.5kQ resistor is 40e-18 V2/Hz. The bandwidth of the 

oscillator loop is approximately one decade greater than the resonant frequency or 250 kHz. Thus, 

the RMS voltage for R, is 3.16 uV. Both voltage sources are attenuated by the resistor pair so the 

voltage stability is 1.26 ppm which meets the required 98 ppm. For a probe voltage amplitude of 

lmV, the RMS voltage for R2=1Q is 63nV which dominates the noise from R, and gives 63ppm 

stability. 

5.4 Thermal Effects 

Thermal effects are an important consideration in the design of any PVR and dictate the 

thermal control required for a device. In order to estimate the performance that is required from the 
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micromechanical resonator, typical quartz oscillators are examined first. When the quartz flexures 

are oriented with regard to the crystallographic axes, the linear thermal variation of the resonant 

frequency is zero and the frequency sensitivity is second order at -0.035 ppm/°C2 where the 

minimum occurs near room temperature [16]. Assuming 10°C from the minimum, the linear 

sensitivity is -0.7 ppm/°C. The thermal stability of the silicon on glass resonators consist of two 

effects: mechanical changes in the structure and a contact potential at the bond points. 

5.4.1 Mechanical Thermal Effects 

By careful design, the frequency sensitivity to thermal variations is 0.5 ppm/°C. In separate 

references to thermal insensitive micromechanical resonators, ppm/°C sensitivity was achieved 

[7,11]. In order to achieve the required 0.3 ppm frequency stability, temperature control of 0.6°C is 

required. Temperature control of 0.01 °C is achieved in current strategic systems at Draper 

Laboratories [17]. The thermal control needed for the thermally insensitive PVR is easily achieved. 

5.4.2 Contact Potential 

A contact potential results from the mismatch in work functions between two metals and 

results in one metal having a higher Fermi level. Consequently, the electrons from the metal with 

the higher Fermi level spill into the metal with a lower level until the filled energy levels in both are 

equal. The result is that one side becomes positively charged while the other becomes negatively 

charged and a potential difference of (wb-w.,)/e exists between the two metals, where e is the charge 

of a single electron. The terms wa and wb represent the work functions of both metals. 

In the resonator model, the contact potential is modeled at the proof mass/substrate junction. 

The proof masses contact the substrate through a silicon/gold contact shown in Figure 1.3. The 

contact potential puts the proof masses at a non-zero potential and can be conveniently modeled an 

additional voltage source in series with the electrode voltages. A simplified model for the pre- 

amplifier that focuses on the contact potential is shown below. 
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Figure 5.4. Contact Potential Model 

The contact potential is measured in the range of -0.3 to 0.3 V with a temperature 

dependence of 1 mV/°C. The initial effect of the contact potential is the generation of a DC voltage 

term and error term as derived in Equation 2.4.12. The a terms could equally account for a bias 

voltage mismatch as well as the area mismatch. The electronics are designed to null the effect of 

this mismatch at the nominal operating temperature. 

As the temperature changes, a problems exists because the electronics cannot be constantly 

tuned for a difference mismatch in bias voltage. The DC voltage term and higher harmonic error 

term should be filtered by the high and low pass at the output of the preamplifier. However, the 

frequency will shift. The change in temperature produces a change in the contact potential. On one 

plate, the voltage will increase while decreasing on the other due to the differential biasing. To 

first, order, the first-order net stiffness coefficients are proportional to the capacitance and the 

squared voltage. 

94 



ky,cc{Vpvr+AVcp)
2Cx 

ky2*(Vpvr-AVcp)
2C2 

(5.4.1) 

The effect of the temperature shift will be a differential shift in the spring terms. This is how the 

contact potential is modeled in the analysis below. 

The analysis of the contact potential indicates that a shift in frequency of 0.009 ppm results 

from using temperature control of 0.6°C. In the coupled model presented in Chapter 2, the out-of- 

phase mode frequency is unaffected by a differential shift in the stiffness coefficients so the 

frequency will not shift as the contact potential changes. This model is slightly altered to make an 

estimate of the frequency shift from the contact potential. A simple coupled oscillator model is 

shown in the figure below where the out-phase-mode is dependent on the coupling. 

yi 
Proof Mass Proof Mass 

V2 

Electrode 

Figure 5.5. Coupled Oscillator Model for Contact Potential 

The kinetic and potential energy for the system can be written 
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I       .2       !        .2 

2^ + 2; T = -myl + -my2 

(5.4.2) 
111 

U = -kyly* + ~ky2y2
2 +-kyl2(yl -y2f 

These two equations can be used to write the generalized mass and stiffness matrices [9]. 

The eigenfrequencies are then calculated with the following determinant: 

kyl+kyU-ma>2 -kyn 

-kyU ky2+kyU-mco2 (5.4.3) 

All of the quantities are known except for the coupling spring term. The separation in 

modal frequencies is known to vary by approximately 3-5%. This separation in the modal 

frequencies can be modeled in the coupling stiffness term or a difference in spring terms resulting 

from mismatched capacitance on the two resonators. 

Modeling the separation in the coupling term produces an estimate of its value. The 

stiffness coefficient ky,2 was adjusted to 2.5 N/m until the modal frequencies were separated by 

4.87%. Next, the temperature control of 0.6°C causes a differential shift of 0.6 mV on each plate. 

This results in a 80 ppm shift in the stiffness coefficients. This differential shift was applied to the 

stiffness coefficients and the out-of-phase mode frequency shift was found to be 0.009 ppm. This is 

a negligible shift in the oscillation frequency. 

Next, the initial separation in the model frequencies was modeled directly with a 5% 

difference in the linear stiffness coefficients and the coupling term was 2.5 N/m. The initial 

difference in modal frequencies is 5.4%. The shift in frequency for 0.6°C temperature control 

exceeds the 0.3 ppm requirement. The limit of 0.01 °C temperature control produces a frequency 

shift of 0.016 ppm. The temperature control for the contact potential shift is the limiting factor in 

thermal control. The current technology provides the necessary temperature control to attain a 

minimum shift of 0.016 ppm.. 
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5.5 Interrupt Resistance and Radiation Hardness 

In addition to the voltage stability and related control measures, the PVR must be interrupt 

resistant. A micromechanical VCO with a resonant frequency based upon a mechanical standard 

will be capable of operating through short interrupts. In a linear second order resonator with a 

quality factor much greater than unity, the time required for the amplitude to fall by a factor of e is 

approximately Q/71 cycles of oscillation [4]. For the resonators, typical quality factors are around 

20e3 and a resonant frequency of 25kHz. The number of cycles required for the amplitude to fall 

by a factor e is approximately 6.4e3 cycles or 0.25 s which is close to the results obtained in the 

start-up transient simulations in Chapter 4. 

A voltage reference based on a mechanical standard should also be radiation hard. The 

radiation effects on silicon and glass are a separate study and the exact relationship between the 

radiation and the frequency of oscillation is not known. 

5.6 Baseline Design and Optimal Performance of Micromechanical PVR 

The baseline design is given in appendix A. The primary changes to the prototype design 

include reduced probe voltage, reduced Q factor, increased mass, and decreased plate area. The 

frequency sensitivity to amplitude variations is reduced from 3.07e-3 to 3.57e-5. This improves 

the frequency sensitivity to probe voltage and pressure changes. With this improvement, the 

baseline design meets the 0.4 ppm voltage stability without an AGC loop. 

In general, the performance of the PVR is increased by decreasing the amplitude of 

oscillation. This minimizes the nonlinear effects which couple the amplitude to the frequency. 

Theoretically, the lower limit of resolution is set by the noise at the preamplifier. Several 

simulations were performed to study the effects of preamplifier noise on frequency noise[15]. The 

preamplifier noise was 10"15 V2/Hz with a resonant frequency of 20kHz and lOum drive amplitude. 

The quality factor of the device was 104. The change in frequency was found as a function of both 

oscillation amplitude magnitude and phase. When the preamplifier noise at the fundamental 

resonance is in phase with the with the position signal at the output of the preamplifier, the 
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magnitude varies. When the signals are in quadrature, the phase varies. The simulation determined 

the amplitude noise to be 0.001 HHz. Multiplying this value by the change in normalized 

frequency with normalized amplitude yields the rate noise of 1.9e-5 rad /s I 4BZ which is close 

to the value of 1.3e-5 rad I? HHz found from the simulated rate noise.   The normalized rate 

noise is 0.0046rad I si 4HZ . The frequency sensitivity to magnitude is much larger than the 

sensitivity to phase so the phase component is negligible. Given a loop bandwidth of 200Hz, the 

root mean square of the frequency noise is given by 0.065 ppm. This simulation was performed 

under similar conditions that the PVR operates and provides a rough estimate for theoretical limit 

of the PVR. 

98 



Chapter   6 

HARDWARE 

6. Overview 

A classic feedback control analysis is performed to design the PLL loop components values. 

This completes the prototype design. The prototype PVR device was built at Draper Laboratories. 

The oscillator loop is fully functioning and self starts with the preamplifier noise. The PLL loop 

locks onto the desired PVR voltage. The goal of this chapter is to present the classic control design 

analysis for the PLL loop, explain the device schematic, and discuss the testing of the fully 

functional PVR prototype. 

6.1  Classical Feedback Control Design 

The block diagram is shown in its final form for the two proof mass resonator in Figure 6.1. The 

inverter in the PLL feedback path generates the inverted bias voltage for the second proof mass, 

resulting in out of phase forcing and differential sensing. 
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Figure 6.1. Block Diagram of Oscillator and Phase Locked Loops 

The design of the electronics for the PLL is simplified if the loop is linearized and redrawn 

as shown in Figure 6.2. In this form, the input signal is the reference phase which is compared with 

the phase of the VCO output. The error signal is then passed through a phase detector that 

produces a voltage proportional to the phase difference with a gain of KD V/radian. This is sent 

through a loop filter that eliminates high frequency components. The transfer function for this filter 

is given by F(s). Finally, the signal is passed to a gain stage, A, that accounts for all the other gain 

in the loop. The output voltage is the precision voltage reference. This voltage is passed into the 

voltage controlled oscillator that converts the voltage to a frequency with a constant of 

proportionality, Ko radians/s/V. Finally, an integrator is added to account for the transformation 

from frequency to phase. Figure 6.2 shows the loop in terms of the components transfer functions. 
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Figure 6.2. Simplified Block Diagram of Phase Locked Loop 

In Figure 6.2, all of the complex feedback network has been eliminated. The resonator has 

been simplified to its incremental gain model. The value of KQ is given by the slope at the bias 

point which is essentially the linearized movement up and down the curve at that point during the 

acquisition and tracking phases of lock. 

The basic transfer function from input to output, in Figure 6.2, is given by 

H1(s) = ^L(s)=     SAK°m 

(j>ref
K)    s+AKDK0F(s) 

(6.1.1) 

In many situations, it is more convenient to examine the response of the PVR voltage in terms of 

changes in reference frequency. The input frequency can be expressed as the derivative of the 

phase. 

<°ref = S<t>ref (6.1.2) 

Substituting this into the above equation gives the following expression for the transfer function: 
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In this application, the input frequency is not modulated and is essentially constant in time so the 

bandwidth is not an important performance criteria. However, the bandwidth of the transfer 

function must be large enough to allow quick acquisition. Again, the acquisition time is not 

important; the loop must simply lock in a reasonable amount of time. 

There are several options for the type of filter to be used. The simplest one is a first order 

passive RC filter. Unfortunately, the lock range and 3dB bandwidth of the loop cannot be set 

independently. Adding a zero to the low pass RC filter provides the flexibility of setting both these 

parameters independently [6]. However, an ideal integrator in the forward path reduces steady state 

errors and enhances performance by offering higher DC gain [5]. There are a number of other 

reasons to avoid passive filters that are offered in Gardner [5]. The filter used in the loop is a 

second order, low pass, active filter and is given by 

K, ( s + co-A 
F(s) = —^  2-\ (6.1.4 

s ys + aj 

This filter is known in servo theory as a proportional plus integral controller with recovery. 

Substituting the loop filter expression into Equation 6.1.3, the transfer function for the loop 

can be written in the general second order form as: 

KnK,(s + w7) 
H(s) = -. = 2-^  (6.1.5) 

and the loop gain is 

AK0KDKL(s + w2) 
L(s) = j—  (6.1.6) 
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Next, the different values for all the constants in Figure 6.2 were calculated. This required choosing 

actual components for the loop and choosing an appropriate phase detector. The value of K„ was 

found from the electrostatic characteristic in Figure 1.4 at the operating point. The filter chosen is 

described above. The phase detector consists of two edge-triggered, resettable D flip-flops with 

their D inputs connected to logic high. The outputs are connected to both resets through a logic 

AND gate. The constant of proportionality for the detector is KD=5/(2TT) V/rad where 5 volts is 

utilized as logic high.  All remaining gain in the loop was lumped into the parameter A. 

In designing this second order loop, general stability requirements on the loop gain were 

used. The crossover frequency is set two decades below the resonant frequency, 0.0lcon. The lead 

and lag terms are separated by a factor of 6. Each is placed symmetrically on either side of the 

crossover frequency to provide for maximum phase at the crossover point. Finally, the loop gain is 

set to unity at the crossover frequency by adjusting KL. After designing the controller, the 

components for each stage are designed to meet the specifications. The simulated bode plot for the 

closed loop, bode plot for the loop gain, and Nyquist plot are shown in Figure 6.3 through Figure 

6.5. 
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Figure 6.3. Simulated Bode Plot of Loop Gain 

Bode Plot of Closed Loop Transfer Function 
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Figure 6.4. Simulated Bode Plot of Closed Loop Transfer Function 
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Nyquist Diagrams 
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Figure 6.5. Simulated Nyquist Diagrams 

The phase margin for the design is approximately 45° and linear stability of the phases locked loop 

is achieved with the design. 

The performance of the PLL loop is relatively unimportant in this application. As long as 

the loop locks in a reasonable amount of time, the loop functions properly. Several performance 

characteristics are useful for testing the performance of the device. The velocity-error coefficient or 

DC loop gain of the PLL is an important parameter that affects the static phase error, hold-in range, 

and acquisition range. The PLL has a DC loop gain of 

Kv = AK0KDF(0) (6.1.7) 

The active filter has an integrator with an operational amplifier DC gain of A0 (~le6). The 

large value for K^ optimizes many static and dynamic characteristics of the PLL. During the 

acquisition phase, it is important that the loop lock over a large bandwidth. The maximum 

difference in frequency for which the loop will lock without skipping cycles is given by [5] 
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Aü)H=con (6.1.8) 

where 

con = loop gain bandwidth = 1500 rad/s 

The maximum difference in frequency between the resonator and the reference which the 

loop will eventually lock itself is the pull-in frequency. For the active filter loop, the pull-in 

frequency is given by [5] 

AcoP=2jg<DnKv (6.1.9) 

Once the loop is locked, it will hold-in lock for any changes in frequency around a 

bandwidth of [5] 

Ao)H=±Kv (6.1.10) 

Finally, the static phase error is the error resulting from a step change of frequency Aco 

while the loop is locked is given by 

Aco ,,, .,.. 
0V=— (6.1.11) 

The large DC loop gain insures that any errors will be tracked out. The large value of K,, for the 

active filter loop minimizes the static phase error and increases the hold-in range and pull-in 

frequency. The values for the PLL loop agree well with the values seen in the PLL loop 

simulations. 
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6.2 Hardware Design and Testing 

The hardware design went through an initial breadboard stage to confirm the operation of 

the electronics. After some minor changes, the final PVR design was built. The component level 

schematic diagram is shown in Appendix C. 

The test station is shown in Figure 6.6 with the PVR device, oscilloscope, function 

generator, and DC power supplies. 

Figure 6.6. Testing Station 

The following two figures provide a closer view of the PVR device and the chip carrier containing 

the sealed micromechanical resonator. 
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Figure 6.7. PVR Device 
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Figure 6.8. Chip Carrier and Packaged Micromechanical Resonators 

The testing of the PVR remained at a basic level for this thesis. The oscillator loop was 

closed first and the self excitation of vertical axis oscillations was confirmed. The PLL loop was 

also closed and the PVR operation was confirmed. 
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The functioning prototype contains several minor changes from the prototype design. First, 

the integral plus proportional controller was removed due to stability problems. The instability was 

caused by not accounting for an integrator 1/s for the resonator. Secondly, a limiter circuit was 

added to the control voltage that limits the value from approximately IV to 10V. The PVR voltage 

can currently be adjusted to any value within this range. The upper limit is simply extended to 

realize the prototype PVR voltage of 15V. The limiting was used to prevent the snapdown of 

additional units. The prototype corresponds exactly to the schematic in appendix C after 

accounting for these changes. 
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Chapter   7 

CONCLUSION AND RECOMMENDATIONS 

In this thesis, a precision voltage reference was analyzed, designed, and tested. After a brief 

introduction to the theory of micromechanical resonators, the basic dynamics of a parallel plate 

micromechanical resonator pair were developed along with the electrostatic actuation theory. 

Several options for biasing the PVR were offered and a simple scheme was chosen with in phase 

probe voltages. The model was simplified to describe the out-of-phase mode of the resonator pair. 

Following the dynamics, the model for sensing the resonator motion was presented and the 

feedthrough was shown to be in quadrature and removed with demodulation at the fundamental 

resonant frequency. 

In chapter 3, the state space model for the closed loop electronics was developed and a 

small and large oscillation amplitude model was developed. Next, the oscillator loop was 

linearized using describing functions and the stability criterion was derived. The instability of the 

oscillator loop was confirmed for a normalized cubic stiffness less than -1.34 N/m3 compared with 

a theoretical value of-0.533 N/m3. 

In chapter 4, the simulations of the phase locked loop and oscillator loop were performed 

and the oscillator loops limit cycle was confirmed. The nonlinear VCO was shown to lock in 

approximately twice the time needed by the linear VCO. The oscillator loop start-up transient was 

0.4 seconds due to the large quality factors (~20e3) associated with the resonator. 

In chapter 5, the performance of the PVR was examined using the dynamic model and an 

error model was constructed. The current prototype design does not meet the desired 0.4 ppm 

voltage stability due to the changes in the pressure of the sealed resonator. A baseline design was 

developed that reduces the drive voltage and slightly decreases the quality factor.   The baseline 
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design does meet the voltage stability specification.    The performance of both of these designs 

would be improved with a AGC loop to control the probe voltage magnitude. 

Finally, in chapter 6, the PLL loop design was completed using a classic control analysis of 

the linearized loop. The PVR prototype was built and tested at Draper Laboratories. The oscillator 

loop self-started in agreement with the simulations. The phase locked loop locked properly. The 

fully functioning prototype confirmed the PVR functionality of the device. 

The analytic models developed for the PVR are very accurate in predicting the resonant 

frequency, output amplitude, electrostatic characteristic, start-up transient, and other device 

characteristics. The models provide an excellent description for the operation of the PVR. 

Additionally testing of the PVR is required to determine the long term stability under temperature 

control, amplitude variations, and pressure variations. 

Along with these tests, there are several improvements that can be made to the design. 

First, the addition of an amplitude control loop would enhance performance of the PVR. Finally, 

the design of a micromechanical resonator that provides position independent forcing would be an 

enormous advantage, eliminating the amplitude/frequency coupling. In this device, this effect was 

minimized by reducing the probe voltage and consequently the amplitude. A parallel plate 

oscillator is unable to provide this flexibility. Another option for the resonators are the comb drive 

oscillators in widespread use; however, these are strongly tied to pressure, constraining their 

performance. 

This thesis has demonstrated the feasibility of the micromechanical resonator-based PVR. 

Initially testing shows the PVR to perform well with a self-starting operation. The analytical 

models predict that performance can be reduced below 0.4 ppm voltage stability with an AGC loop 

or reduction in probe voltage. 
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APPENDICES 

Appendix A. Design Spreadsheet 

First Order Calculations 
for all SS Y0->YSS & wO->wn TFG Baseline Optimal Baseline 

Design Design 
•proof mass m 2.73E-09 3.00E-09 kg 
"total plate area A 1.35E-07 1.60E-07 m"2 
torquer plate area At 1.35E-08 0.000000016 mA2 
sense plate area As 1.215E-07 0.000000144 mA2 
•fringing coefficient alpha 1 1 no units 
•permittivity of free space eps 8.85E-12 8.85E-12 Farads/m 
•nominal sense gap YO 2.50E-06 2.50E-06 m 

Second Order Resonator Char. 
Resonant Frequencies 
* sense mode freq(#384) 
operating frequency(SS) 

Damping Calculations 
•quality factor (384) 
damping 

Electrode Voltages 
•torquer bias 
•torquer excitation 
•sense bias 
Area voltage totals 
nominal capacitance(t+s) nom. gap 

Sense Axis Performance Parameters 
Mechanical Stiffness 
Electrical Stiffness 
Electrical Stiffness(SS) 
Net Linear Stiffness(SS) 
ratio of electrical to mech(SS) 

wO 168629.1972 168629.1972 rad/s 
wn 134088.0727 127616.5766 rad/s 
fO 26851.783 26851.783 1/s 
fn 21351.60393 20321.11093 1/s 

Qs 19190 15000 rad/s/m 
by 2.39895E-08 3.37258E-08 kg-m 

Va 15 15 V 
Vb 1.00E-03 1.00E-04 V 
Vc 15 15 V 
AVT 3.0375E-05 3.6E-05 m-VA2 
CO 4.779E-13 5.664E-13 Farads 

kym 77.62975082 85.30741849 kg-m/sA2 
kye -17.20440001 -20.3904 kg-m/sA2 
kyess -28.54541215 -36.44944659 kg-m/sA2 
ky 49.08433867 48.8579719 kg-m/sA2 
kymkye -0.367712273 -0.42727171 no units 

114 



Solve for Gap using iteration(more accurate) 
Dispacement from bias, both electrodes(SS) 
polynomial, use goal seek for 0 with C35 
Dispacement from bias, both electrodes(SS) 
Solve for Gap from PWards Estimate 
Dispacement from bias, both electrodes(SS) 
Nominal sense gap(SS) 
Nominal capacitanc(SS) 

Sense Loop Gains Based On One Mass(SS) 
Q at steady state 
force/Vb 
y/force @ sense resonant 
output voitage/y(two proof masses) 
amplitude of oscillation(one mass) 
amplitude of output voltage(two masses) 
ratio of torquer to sense force 

Snapdown Voltages 
DC value (t&s) 
DC value (s) 

Nonlinear Calculation 
Cubic Spring Term (SS) 
normalized cubic 
frequency shift due to cubic term 
true frequency shift 
amp. stab, given 0.3 ppm ang. freq. stab. 
ratio of amp stab to desire freq stability 

Electrical Components 
'Feedback cap 
"Feedback res 

-3.88E+00 -4.40E+00 10e-7m 
2.27314E-05 1.9096E-05 

yc -3.88257E-07 -4.40074E-07 m 

yc2 -3.55902E-07 -3.92624E-07 m 
Yss 2.11174E-06 2.05993E-06 m 
COss 5.65765E-13 6.87403E-13 Farads 

Qss 15259.22057 11351.82211 rad/s/m 
dFdV -4.01871E-07 -5.00554E-07 N/V 
dydF 310.877583 232.3432936 m/N 
dVoutdy 4018705.105 5005544.084 V/m 
dy -1.24933E-07 -1.163E-08 m 
Vout -0.502067008 -0.058214708 V 
ratio 2.22222E-10 2.22222E-12 no units 

Vsnap 17.34397748 16.70070857 V 
Vsnaps 18.28215751 17.60409254 V 

ky3e -1.28022E+13 -1.71798E+13 kg/(m-s)A2 
ky3t -0.004070917 -4.75604E-05 1/m 
dw -0.001526594 -1.78351E-05 no units 
delw -204.6980553 -2.276058915 rad/s 

9.79582E-05 0.008410065 no units 
326.5272571 28033.55039 no units 

Cfb 2.00E-12 2.00E-12 Farads 
Rfb 2.00E+08 2.00E+08 Ohms 

Frequency Stability given Voltage Stability 
Best Estimates at One Op. Point 
Desired Voltage Stability 
Frequency Stability(Analytical) 
for test case see electrostatic.m 
not valid past 5V 

thetavov 
thetawowa 

4.00E-07 
2.32623E-07 

4.00E-07 no units 
2.98411 E-07 no units 
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TFG Baseline 
Design 

m 0.00000000273 
A 0.000000135 
At =0.1 *A 
As =0.9*A 
alpha 1 
eps 0.00000000000885 
YO 0.0000025 

Optimal Baseline 
Design 
0.000000003 
0.00000016 
=0.1 *A 
=0.9*A 
1 
0.00000000000885 
0.0000025 

wO =26851.783*2*3.14 =26851.783*2*3.14 
wn =wO*SQRT(1 +kyess/kym) =wO*SQRT(1 +kyess/kym) 
fO =+C14/2/3.14 =+D14/2/3.14 
fn =+C15/2/3.14 =+D15/3.14/2 

Qs 19190 15000 
by =m*wO/Qs =m*wO/Qs 

Va 15 15 
Vb 0.001 0.0001 
Vc 15 15 
AVT =As*VcA2+At*(VaA2+VbA2) =As*VcA2+At*(VaA2+VbA2) 
CO =alpha*eps*A/YO =alpha*eps*A/Y0 

kym =m*wOA2 =m*wOA2 
kye =-alpha*eps*AVT/Y0A3 =-alpha*eps*AVT/Y0A3 
kyess =-alpha*eps*AVT7YssA3 =-alpha*eps*AVT/YssA3 
ky =kym+kyess =kym+kyess 
kymkye =kyess/kym =kyess/kym 
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yc 

-3.8825691935761 -4.40074039471848 
=C37A3+2*Y0/0.0000001*C37A2+Y0A2=D37A3+2*Y0/0.0000001*D37A2+Y0A2 
=+C37*0.0000001 =+D37*0.0000001 

yc2 
Yss 
COss 

=-alpha*eps*AVrY0/(2*kym*Y0A3-2*a=-alpha*eps*AVT*Y0/(2*kym*Y0A3-2*a 
=Y0+yc =YO+yc 
=alpha*eps*A/Yss =alpha*eps*A/Yss 

Qss 
dFdV 
dydF 
dVoutdy 
dy 
Vout 
ratio 

=Qs*wn/wO =Qs*wn/wO 
=-alpha*eps*At*Va/YssA2 =-alpha*eps*At*Va/YssA2 
=Qss/ky =Qss/ky 
=2*alpha*eps*(As*Vc+At*Va)ArssA2/Cf=2*alpha*eps*(As*Vc+At*Va)A'ssA2/Cf 
=Vb*dFdV*dydF =Vb*dFdV*dydF 
=dy*dVoutdy =dy*dVoutdy 
=At/A*VbA2/2A/aA2 =AVA*VbA2/2A/aA2 

Vsnap 
Vsnaps 

=SQRT(kym*(2/3*Y0)A3/(alpha*eps*A))=SQRT(kym*(2/3*Y0)A3/(alpha*eps*A)) 
=SQRT(kym*(2/3*Y0)A3/(alpha*eps*As=SQRT(kym*(2/3*Y0)A3/(alpha*eps*As 

ky3e 
ky3t 
dw 
delw 

=-alpha*2*eps*AVT/YssA5 
=ky3e*dyA2/ky 
=3/8*ky3e/ky*dyA2 
=dw*wn 
=ABS(0.0000003/(dw*2/(1 +dw)A2)) 
=+C63/0.0000003 

=-alpha*2*eps*AVT/YssA5 
=ky3e*dyA2/ky 
=3/8*ky3e/ky*dyA2 
=dw*wn 
=ABS(0.0000003/(dw*2/(1 +dw)A2)) 
=+D63/0.0000003 

Cfb 
Rfb 

0.000000000002 
200000000 

0.000000000002 
200000000 

thetavov 
thetawowa 

0.0000004 0.0000004 
=thetavov*VcA2/wnA2*eps*A/m/YssA3 =thetavov*VcA2/wnA2*eps*A/m/YssA3 
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Appendix B. Matlab© Files 

The following files contain the code used to simulate the PLL and oscillation loops. These 

files were only slightly modified to analyze the effects of specific parameter perturbations. 

HLOOPO.M 
% PVR Analysis Solves the non-linear differential equation associated 
% with the oscillation of the parallel plate resonators 
clear all 
clock 

% Define constants for Renormalizations 
m=2.73e-9; 
epsilon=8.85e-12; 
A=1.35e-7; 
As=0.9*A; 
At=0.1*A; 
Y0=2.5e-6; 
Va=15; 
Vb=le-3; 
Vc=Va; 
AVT=At*(VaA2+VbA2)+As*VcA2; 
alpha=l; 
w0=26829*2*pi; 
kym=wOA2*m; 
Q=19190; 
by=m*wO/Q; 
% Calculate DC displacement yc 
c3=l; 
c2=2*Y0; 
cl=Y0A2; 
cO=alpha*epsilon/2*AVT/kym; 
c=[c3 c2 cl cO]; 
ydc=roots(c); 
yc=max(ydc); 
% Approximations for Normalizations 
% Time Normalization 
kye=-alpha*epsilon*AVT/(Y0+yc)A3; 
ky=kym+kye; %Exact first order representation using dc displacement 
wn=sqrt(ky/m); 
% Length Normalization 
Fy=-alpha*epsilon*At*Va*Vb/(Y0+yc)A2; %This is the periodic force for driving, only one 
left after removing dc stuff from equations 
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yO=abs(Fy/ky/by*m*wn); %Low order estimate(w/ steady state) 
yp=yO; 
% Alternate Time 
ky3e=-2*alpha*epsilon*AVT/(Y0+yc)A5; 
ky3et=ky3e*yOA2/ky; 
wr=sqrt((kym+kye+3/4*ky3e*ypA2)/m); 

% Set the integration time and times that matlab will pass solutions at 
% note: it will solve at variable time step depending on tolerance settings 
tauf=3000e-4*wn; 
taustep=0.5; 
numpoints=(tauf/taustep)+l; 
tauspan=linspace(0,tauf,floor(numpoints)); 

%Declare Global Variables(extra monitored elements) 
global INDEX VHL; 
INDEX =1; 
VHL=-1; 

% Perform the ODE45 routine, initial conditions all set to zero 
xinitial=[0,0,0,0]; 
options = odeset('outputfcnVmyparamso2'); 
[tau,x]=ode45('loopo2',tauspan,xinitial,options); 

%Plot the time evolution 
figure(3) 
subplot( 1,4,1) 
plot(tau/wn,x(:, 1 )*yO+yc); 
title('position'); 
subplot( 1,4,2) 
plot(tau/wn,x(:,2)*y0*wn); 
title('velocity'); 
subplot( 1,4,3) 
plot(tau/wn,x(:,3)); 
title('x*'); 
subplot( 1,4,4) 
plot(tau/wn,x(:,4)); 
title('Vps'); 

clock 
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LOOPO.M 

function xprime=loopo2(tau,x); 
% the function loopo(tau,x) returns the state derivatives of the 
% equations for oscillation of the pvr 

% Declare global variables for calculations 
global VHL INDEX; 

% Set up constants for defining parameters(these are all constant) 
m=2.73e-9; 
epsilon=8.85e-12; 
A=1.35e-7; 
As=0.9*A; 
At=0.1*A; 
Y0=2.5e-6; 
Va=15; 
Vb=le-3; 
Vc=Va; 
AVT=At*(VaA2+VbA2)+As*VcA2; 
alpha=l; 
w0=26829*2*pi; 
kym=wOA2*m; 
Q=19190; 
by=m*wO/Q; 
% Calculate DC displacement yc 
c3=l; 
c2=2*Y0; 
cl=Y0A2; 
cO=alpha*epsilon/2*AVT/kym; 
c=[c3 c2 cl cO]; 
ydc=roots(c); 
yc=max(ydc); 
% Approximations for Normalizations 
% Time Normalization 
kye=-alpha*epsilon*AVT/(Y0+yc)A3; 
ky=kym+kye; %Exact first order representation using dc displacement 
wn=sqrt(ky/m); 
% Length Normalization 
Fy=-alpha*epsilon*At*Va*Vb/(Y0+yc)A2; %This is the periodic force for driving, only one 
left after removing dc stuff from equations 
yO=abs(Fy/ky/by*m*wn); %Low order estimate(w/ steady state) 
yp=yO; 
% Alternate Time 
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ky3e=-2*alpha*epsilon*AVT/(Y0+yc)A5; 
ky3et=ky3e*yOA2/ky; 
%Artificial value insertion for stability test 
%ky3et=-0.9; 
wr=sqrt((kym+kye+3/4*ky3e*ypA2)/m); 

% Electronics Parameters 
% Sampling rate, Nyquist 
taustep=0.0002; %Estimate since matlab adjusts 
fhy=l/2/taustep; 
% Noise Calculations 
phiv=le-16*wn;    %White noise PSD(single sided in VA2/HZ) 
vrmss=sqrt(phiv*fny); 
gausdev=randn; 
VN(INDEX):=vrmss*gausdev; 
% Pre-Amplifier Stage 
Cfb=2e-12; 
Rfb=200e6; 
wfbt=l/wn/Cfb/Rfb; 
CN=4e-12;%Stray capacitance 
% High Pass Stage 
Rhpfb=50; 
Rhp=l; 
% Phase shifter 
wpst=0.01; 
% Hard Limiter 
delta=0.003; 

% Closed loop Drive Frequency(Oscillator only) 
Vav=15; 
Vcv=15; 
Vbv=sign(VHL(TNDEX))/1000; %Fixes magnitude 
Vtl=Vav+Vbv; 
Vsl=Vcv; 

% Define State Variables (Start variable parameters here) 
% x(l)=proof mass position 
% x(2)=proof mass velocity 
% x(3)=state variable of pre-amp (x*) 
% x(4)=phase shifter voltage 

% Oscillator loop begin with the output of the hard limiter 
% PLL loop is imaginary and used to calculate the frequency 
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% Oscillator loop 
xlp=x(2); 
%x2p=-by/wn/m*x(2)-kym/ky*x(l)- 
alpha*epsilon/2/ky/y0*(At*VtlA2+As*VslA2)/(Y0+y0*x(l))A2; 
% Use state space respresentation of plate 
x2p=-(l+3/4*ky3et*(yp/y0)A2)*x(l)-by/wn/m*x(2)- 
alpha*epsilon*At*Vav*Vbv/(Y0+yc)A2/ky/y0; 
x3p=-wfbt*(x(3)+VN(INDEX)*CN/Cfb)+yO/Cfb*((VN(INDEX)-Vsl)*(- 
alpha)*epsilon*As/(Y0+y0*x(l))A2+(VN(INDEX)-Vtl)*(- 
alpha)*epsilon*At/(Y0+y0*x(l))A2)*x(2); 
Vpre=-Rhpfb/Rhp*(x(3)+VN(INDEX)*(1+CN/Cfb)); 
x4p=-Vpre-wpst*x(4); 
% Hard Limiter requires memory of previous state 
% Performed in output function(After every successful completion 
% of ode45 routine) 
xprime=[x Ip;x2p;x3p;x4p]; 

MYPARAMSO.M 

function status = myparamso2(tau,x,flag); 
% This function is called at the end of each successful 
% iteration, calculates the hard limiter voltage 
global INDEX VHL; 
if nargin < 3 | isempty(flag)      % myparamso(t,y) 

m=2.73e-9; 
epsilon=8.85e-12; 
A=1.35e-7; 
As=0.9*A; 
At=0.1*A; 
Y0=2.5e-6; 
Va=15; 
Vb=le-3; 
Vc=Va; 
AVT=At*(VaA2+VbA2)+As*VcA2; 
alpha=l; 
w0=26829*2*pi; 
kym=wOA2*m; 
Q=19190; 
by=m*wO/Q; 
% Calculate DC displacement yc 
c3=l; 
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c2=2*Y0; 
cl=Y0A2; 
cO=alpha* epsilon/2 * AVT/kym; 
c=[c3 c2 cl cO]; 
ydc=roots(c); 
yc=max(ydc); 
% Approximations for Normalizations 
% Time Normalization 
kye=-alpha*epsilon*AVT/(Y0+yc)A3; 
ky=kym+kye; %Exact first order representation using dc displacement 
wn=sqrt(ky/m); 
% Length Normalization 
Fy=-alpha*epsilon*At*Va*Vb/(Y0+yc)A2; %This is the periodic force for driving, only 

one left after removing dc stuff from equations 
yO=abs(Fy/ky/by*m*wn); %Low order estimate(w/ steady state) 
yp=yO; 
% Alternate Time 
ky3e=-2*alpha*epsilon*AVT/(Y0+yc)A5; 
ky3et=ky3e*yOA2/ky; 
wr=sqrt((kym+kye+3/4*ky3e*ypA2)/m); 

% Calculate Vpvr for all time intervals passed during this successful step 
INDEX=INDEX+1; 
% Calculate VHL at the end of the time intervals, used in next interval 

delta=0.003; 
if x(4,length(tau)) > delta 

VHL(INDEX)=1; 
elseif x(4,length(tau)) < -delta 
VHL(INDEX) = -1; 
else 
VHL(INDEX) = VHL(INDEX-l); 

end 

switch(flag) 
case 'init' % myparamso(tspan,yO,'init') 

tau = tau(l); 
x = x; 

case 'done' % myparamso([],[],'done') 

end 
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end 

status = 0; 

HLOOPP.M 

% PVR Analysis Solves the non-linear differential equations 
% associated with the PLL loop of the parallel plate resonators 
clear all 
clock 

% Define constants for Renormalization 
m=2.73e-9; 
epsilon=8.85e-12; 
A=1.35e-7; 
As=0.9*A; 
At=0.1*A; 
Y0=2.5e-6; 
Va=5; 
Vb=10e-3; 
Vc=Va; 
AVT=At*(VaA2+VbA2)+As*VcA2; 
alpha=l; 
w0=26829*2*pi; 
kym=wOA2*m; 
Q=19190; 
by=m*wO/Q; 
% Approximations 
% Time Normalization 
kye=-alpha*epsilon* AVT/Y0A3; 
ky=kym+kye; 
wn=sqrt(ky/m); 
% Length Normalizatio 
Fy=-alpha*epsilon*At*Va*VbAr0A2; 
yp=abs(Fy/ky/by*m*vvTi); %Low order estimate(w/o steady state) 
y0=yp; 
% Alternate Time 
ky3e=-2*alpha*epsilon* AVT/Y0A5; 
wr=sqrt((kym+kye+3/4*ky3e*ypA2)/m); 

% Set the integration time and time step that matlab will alias 
tauf=100e-4*wn; 
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taustep=0.02;  %one period of oscillator(wn) = 2pi non-dim seconds 
numpoints=tauf/taustep+1; 
tauspan=lmspace(0,tauf,floor(numpoints)); 

% Declare extra monitored elements 
global KO; 
K0=2*pi*(-2.773); 
% Perform the ODE45 routine, initial conditions all set to zero 
% Define options file for the output function,tolerances, and 
% special step sizes 
%options 
odesetCoutputfcnVmyparamspVRelTor, 1,' AbsTol', 1 ,'MaxStep^taustep,lnitialStep',taustep); 
options = odesetCoutputfcnVmyparamsp'); 
[tau,x]=ode45('loopp,,tauspan,[0 0 0],options); 

%Plot the time evolution 
figure(l) 
subplot( 1,4,1) 
plot(tau/wn,x(:,l)); 
title('Internal State'); 
subplot(l,4,2) 
plot(tau/wn,x(:,2)); 
title('Vpvr'); 
subplot(l,4,3) 
plot(tau/wn,x(:,3)); 
titleCPhaseofVCO'); 
subplot(l,4,4) 
plot(tau/wn,KO); 
title('K0*); 

clock 

LOOPP.M 

function xprime=loopp(tau,x); 
% The function loop(t,x) returns the state derivatives of the 
% equations for the phase locked loop of the pvr 

% Define global constants to allow calculation of additional variables in ode45 
global KO; 

% Set up constants for defining temporal and spatial normalizations 
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% and for use in state space equations 
m=2.73e-9; 
epsilon=8.85e-12; 
A=1.35e-7; 
As=0.9*A; 
At=0.1*A; 
Y0=2.5e-6; 
Va=5; 
Vb=10e-3; 
Vc=Va; 
AVT=At*(VaA2+VbA2)+As*VcA2; 
alpha=l; 
w(K26829*2*pi; 
kym=wOA2*m; 
Q=19190; 
by=m*wO/Q; 
% Approximations for Normalizations 
% Time Normalization 
kye=-alpha*epsilon*AVT/Y0A3; 
ky=kym+kye; 
wn=sqrt(ky/m); 
% Length Normalization 
Fy=-alpha*epsilon*At*Va*Vb/Y0A2; 
yp=abs(Fy/ky/by*m*wn); %Low order estimate(w/o steady state) 
yO=yp; 
% Alternate Time 
ky3e=-2*alpha*epsilon*AVT/Y0A5; 
wr=sqrt((ky+3/4*ky3e*ypA2)/m); 

% Electronics Parameters 
% Phase Detector 
% Sinusoidal 
V1=1;V2=1; 
KD=Vl*V2/2; 
% Square 
Vlim=l; 
%KD=Vlim/2/pi; 
% VCO, use measured characteristic, KO needed in loop 
%K0(INDEX)=2*pi*(-l6.269*Vpvr(length(Vpvr))-2.773); %K0 for linearized small signal model 
dvpvr=5; %Sets the desired PVR voltage 
K0f=2*pi*(-16.269*dvpvr-2.773); 
% Loop Filter 
% Non-dimensional 
wc=0.01; 
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rtal=sqrt(6); 
w2=wc/rtal; 
wl=wc*rtal; 
kc=-wc*wc*rtal/K0f7KD*wn; 
% Dimensional 
dw2=wc*wn/rtal; 
dwl=wc*wn*rtal; 
%dkc=wcA2*wnA2*rtal/KD/K0(INDEX); 
% State space equations for the pll loop 
apll=[0 0 0;1 -wc*rtal 0; 0 1 0]; 
bpll=[kc*wc/rtal kc 0]'; 
cpll=[0 0 1]; 
dpll=[0]; 

% Define State Variables (Start variable parameters here) 
% x(l)=state variable of loop filter 
% x(2)=Vpvr, previous(derivative of VCO phase, aVA2+bV) 
% x(3)=phase of VCO to be added to phase due to center frequency 

% Calculate the reference phase; Choose the frequency to lock to 
% Set voltage desired above 
wreft=2*pi*(-16.269*dvpvrA2-2.773 *dvpvr+26851.783)/wn; 
wreftm=mod(wreft*tau,2*pi); 
Vref=cos(wreftm); %/abs(cos(wreftm)); 
% Model VCO,calculate Voltage at the output of VCO 
wcen=2*pi*26851.783/wn; %wcen measured 
phaseVCO=mod(wcen*tau+x(3),2*pi); 
vcoout=sin(phaseVCO); 
%if phaseVCO = 0 
%  vcoout=l; 
%else 
%  vcoout=sin(phaseVCO)/abs(sin(phaseVCO)); 
%end 
% Model the phase detector, KD is contained within multiplication 
pherr=Vref*vcoout; 

dxl=bpll(l,l)*pherr; 
dx2=x(l)+apll(2,2)*x(2)+bpll(2,l)*pherr; 
dx3=x(2)*K0(length(K0))/wn; 
xprime=[dxl ;dx2;dx3]; 

MYPARAMSP.M 
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function status = myparamsp(tau,x,flag); 
% At each step, this is called and sent the initial and final 
% values for that step 
global KO; 
if nargin < 3 | isempty(flag)      % myparams(t,y) 

% Define constants for Renormalization 
m=2.73e-9; 
epsilon=8.85e-12; 
A=1.35e-7; 
As=0.9*A; 
At=0.1*A; 
Y0=2.5e-6; 
Va=5; 
Vb=10e-3; 
Vc=Va; 
AVT=At*(VaA2+VbA2)+As*VcA2; 
alpha=l; 
w0=26829*2*pi; 
kym=wOA2*m; 
Q=19190; 
by=m*wO/Q; 
% Approximations 
% Time Normalization 
kye=-alpha*epsilon*AVT/Y0A3; 
ky=kym+kye; 
wn=sqrt(ky/m); 
% Length Normalizatio 
Fy=-alpha*epsilon*At*Va*VbAr0A2; 
yp=abs(Fy/ky^y*m*wn); %Low order estimate(w/o steady state) 
yO=yp; 
% Alternate Time 
ky3e=-2*alpha*epsilon*AVT/Y0A5; 
wr=sqrt((kym+kye+3/4*ky3e*ypA2)/m); 

% Calculate KO at every time step 
K0=[K0,2*pi*(-16.269*x(2,:)-2.773)]; 
% Calculate Vpvr for all time intervals passed during this successful step 
%INDEX=INDEX+1; 
%Vpvr=[Vpvr,x(2,:)];%*wn/K0(INDEX-l)];    %Constant KO over the interval 

else 
switch(flag) 
case 'inif % myparams(tspan,yO,'init') 
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tau = tau(l); 
x = x; 

case 'done' % myparams^fl/done') 

end 
end 

status = 0; 
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Appendix C. PVR Schematic 

The prototype schematic is presented here. The many switches incorporated into the design 

allow two important functions. First, they were used to test several different modulators(phase 

detectors) and other blocks for optimal switching performance. Secondly, they allowed the external 

supply of signals for open loop testing of the device. 
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